

cenidet
®

Centro Nacional de Investigación y Desarrollo Tecnológico

Departamento de Computación

TESIS DE MAESTRÍA EN CIENCIAS

Un Enfoque Basado en Ontologías para la Integración de Variantes de i*
(An Ontology-Based Approach for Integrating i* variants)

Presentada por

Karen Mariel Nájera Hernández
Ingeniera en ciencias de la Computación por la Benemérita Universidad Autónoma de Puebla

Como requisito para la obtención del grado de:
Maestría en Ciencias en Ciencias de la Computación

Director:
Dra. Alicia Martínez Rebollar

CENIDET, México.

Co-Director de tesis:
Dra. Anna Perini

Fundación Bruno Kessler, Italia.

Jurado:
Javier Ortiz Hernández – Presidente
Hugo Estrada Esquivel – Secretario

Alicia Martínez Rebollar – Vocal

Cuernavaca, Morelos, México. 17 de noviembre de 2011

The research reported in this thesis has been financially supported by National Council of Science and
Technology “CONACYT” (Consejo Nacional de Ciencia y Tecnología).

©Karen Mariel Najera Hernandez

Printed in Mexico
Cuernavaca, Morelos.

Acknowledgments

In august 2009, little more than 2 years ago, I started this project of life that I finish now. Maybe, it
seems it is not a long time; however, it has been a very important part of my life. I never imagined all
the moments, beautiful but also hard some of them, that I was about to live. I had many experiences
and I met many people which are part of the achievement.

First of all I would like to say thanks to God, because he was the main support in all of this time.

I would like to thanks to all the people who supported me along this time, in different ways, because
this thesis could not have been completed without their valuable support.
Foremost, I want to express my full gratitude to my advisor Alicia Martinez, who guided me with
patience and provided me with meticulous suggestions and precious advices. Furthermore, she
always encouraged me to do the things in the best way. I would also like to thanks infinitely to my co-
advisor Anna Perini who gave me the opportunity to participate with her research group in the Bruno
Kessler Foundation (FBK) in Trento, Italy. She was always available for discussing my thoughts, and
her comments and contributions have been of great value for me. Thanks very much to these two
successful women who are an example to follow. They showed me that the relationship advisor-
student may be at a level beyond the professional work touching the limits of friendship.

Thanks to Hugo Estrada for his suggestions and advices, and especially for his enthusiasm and
motivation for the development of this thesis.

Thanks to Javier Ortiz, because her comments and concerns have been very useful to supplement this
thesis.

I want to say thanks to all of them not only because of their support in the professional level, but also
for their friendship along this experience.

I would also like to thanks to Carlos Cares for his support. Thanks for solving my doubts and for
providing me the material required to use their scientific contributions in my thesis.

Moreover, thanks to all my teachers who transmitted me their knowledge and helped me to improve
my education.

Infinite thanks also to all my friends and colleagues who shared with me the whole or part of this
road. In particular thanks to:

Miguel Yris for his unconditional friendship, thanks for his support in personal and professional life
and thanks for all the incomparable and funny times that we shared.

Cesar Villatoro for his invaluable friendship, thanks for his support in difficult times during this period.

Veronica Sotelo for her advices and activities that helped me to overcome the difficulties.

Cynthia Ceron for her friendship, thanks for the great adventures that she allowed me to share with
her.

Monica Pichardo for all her support and availability to help me to resolve administrative issues.

Moreover, in alphabetical order by name I want to say thanks to:
Angelo Susi, Asta Ze, Blanca Vargas, Chiara Di Franchescomarino, David Pech, Eliel Morales, Francis
Palma, Ilse Grau, Luis Santillán, Marc Oriol, Mirko Morandini, Oscar Sandoval, Sabino Pariente, Surafel
Lema.
Their presence, their support, as well as discussions and experiences we shared created a pleasant
environment at work and in personal life.

Last but not least, I want to thank my wonderful family, for their support during these years of study.
Thanks to my parents for their invaluable help, for their encouragement and for sharing with me all
the emotions that arose me in this period. Thanks to my sisters for being with me and for their
unconditional friendship. Thanks to my boyfriend for being with me in the culmination of this
achievement. Thanks to them, for the strength that they gave me day by day and thanks for their
infinite love.

Thank you all.
Karen Mariel Najera Hernandez

Agradecimientos

En agosto del 2009, hace poco más de dos años, comencé este proyecto de vida que hoy concluyo. No
parece haber pasado demasiado tiempo desde entonces, ha sido una parte muy importante en mi
vida. Nunca imaginé todos los momentos, hermosos pero también difíciles algunos de ellos, que
estaba por vivir. Viví muchas experiencias y conocí mucha gente que es parte de este gran logro.

Antes que nada quiero agradecer a Dios, porque él fue mi principal soporte en todo este tiempo.

Quiero agradecer a todas esas personas que me apoyaron durante este tiempo de diferentes
maneras, porque esta tesis no habría sido completada sin su invaluable ayuda.

En primer lugar, quiero expresar mi total gratitud a mi directora de tesis, la Dra. Alicia Martínez, quien
me guió con paciencia y me proporcionó sugerencias meticulosas y valiosos consejos. Además
siempre me alentó para hacer las cosas de la mejor manera posible. Quiero agradecer infinitamente
también a mi codirectora de tesis, la Dra. Anna Perini, quien me brindó la oportunidad de participar
en su grupo de investigación en la Fundación Bruno Kessler en Trento, Italia. Ella estuvo siempre
disponible para discutir mis dudas y sus comentarios y contribuciones fueron de gran valor para mí.
Infinitas gracias a ellas, dos mujeres exitosas que son un ejemplo a seguir y que me enseñaron que la
relación asesor-asesorado puede llevarse a un nivel mas allá de lo profesional tocando los límites de
la amistad.

Gracias al Dr. Hugo Estrada por sus consejos y sugerencias, y sobre todo por su entusiasmo y su
motivación para el desarrollo de esta tesis.

Gracias al Dr. Javier Ortiz, porque sus comentarios e inquietudes fueron de gran utilidad para
complementar esta tesis.

Quiero agradecer a todos ellos no solamente por su apoyo en el ámbito profesional sino también por
su amistad a lo largo de esta experiencia.

Quiero agradecer a Carlos Cares por su apoyo brindado. Por resolver mis dudas y proporcionarme el
material necesario para utilizar sus aportaciones científicas en mi tesis.

Además, gracias a todos los profesores que durante mis estudios de maestría me transmitieron sus
conocimientos y me ayudaron a mejorar mi formación académica.

Infinitas gracias también a todos mis amigos y colegas quienes compartieron conmigo todo o parte de
este camino. En especial gracias a:
Miguel Yris por su incondicional amistad. Por su apoyo en el trabajo y por todos los momentos de
diversión compartidos.
Cesar Villatoro por su invaluable amistad. Por todo su apoyo en los momentos difíciles durante este
periodo.
Verónica Sotelo por sus consejos y actividades que me ayudaron a sobrellevar los inconvenientes que
se me fueron presentando.
Cynthia Ceron por su gran amistad y por las grandes aventuras que me permitió compartir con ella.
Mónica Pichardo por todo su apoyo y disponibilidad para ayudarme a resolver los asuntos
administrativos.

Además, en orden alfabético, quiero agradecer a:
Angelo Susi, Asta Ze, Blanca Vargas, Chiara Di Franchescomarino, David Pech, Eliel Morales, Francis
Palma, Ilse Grau, Luis Santillán, Marc Oriol, Mirko Morandini, Oscar Sandoval, Sabino Pariente, Surafel
Lema.
Su presencia, su apoyo, así como las discusiones y experiencias que compartimos crearon un
ambiente placentero en el trabajo y en la vida personal.

Finalmente, pero no menos importante, quiero agradecer a maravillosa familia, por su apoyo en estos
años de de estudio. Gracias a mis padres por su invaluable ayuda, por sus ánimos y por compartir
conmigo todas las emociones surgidas en este periodo. Gracias a mis hermanas por ser
incondicionales conmigo y por su invaluable amistad. Gracias a mi novio por estar conmigo en la
culminación de este logro. Gracias a ellos, por la fuerza que me dieron día a día y por su infinito amor.

Gracias a todos
Karen Mariel Nájera Hernández

Abstract

Nowadays, the complexity of information systems has forced software engineers to look for
alternatives to get a deep understanding of the organization before starting the development of a
software system to automate its processes. An important alternative which efficiently helps to
achieve the deep understanding of the organization is to carry out the early requirements elicitation
stage as part of the software development cycle. Techniques are available to carry out the early
requirements elicitation. Those techniques consider the organizational requirements, and they are
also known as “Organizational modeling techniques”. The i* framework is a widely used
organizational modeling technique. It uses strategic relationships to model the social and intentional
context of an organization. The i* framework has been applied in different application domains;
hence many i* variants have been proposed. The variations are related with the addition of new
elements to the i* framework or with the change of the semantics of the original elements of the i*
framework. However, regardless of difference in variants, sharing information and integration of
models expressed in different i* variants becomes a difficult task and becomes necessary to establish
a way of understanding between variants. The issue of propitiate the understanding between i*
variants and their models has been faced at different levels, e.g. through unified metamodels, or with
an interchange format for representing i* models. Our aim in this thesis is to investigate the role of
the use of ontologies to realize the integration of i* variants, propitiating the understanding of the i*
variants and the understanding of their models by means of a common language established for the
ontologies. With the use of ontologies furthermore, we bring the advantages of ontologies to the
organizational modeling domain. In this thesis, we describe our proposed solution for guiding the
process of integrating i* variants into an ontology. We propose a methodology based on three main
steps: first, the development of an ontology which has been called OntoiStar for representing the
core concepts of the i* variants and the relationships between those concepts. Second, a method is
proposed for providing a guidance for generating the ontology of a specific i* variant based on the
ontology OntoiStar. The second step may be performed many times as necessary to obtain an
ontology of each i* variant desirable to integrate. And third, the creation of an ontology called
OntoiStar+ by merging the i* variant ontologies which have been developed following the second
step. OntoiStar+ thus, contains all the constructs of the merged i* variant ontologies. As a first
application of our approach we describe the integration of the variants: i*, Tropos and Service-
oriented i*. Additionally we developed a tool called TAGOOn – (Tool for the Automatic Generation of
Organizational Ontologies) which supports the automatic transformation from an i* based model
represented with the variants: i*, Tropos and Service-oriented i* to an ontology derived from the
concepts of OntoiStar+. The functionality of TAGOOn can be extended for supporting the automatic
transformation of models represented with other i* variants since the basis for achieving that are
provided.

Resumen

En la actualidad, la complejidad de los sistemas de información ha forzado a los ingenieros de
software a buscar alternativas para alcanzar un entendimiento profundo de la organización antes de
iniciar el desarrollo de un sistema de software que automatice sus procesos. Una alternativa
importante que ayuda eficientemente a alcanzar ese entendimiento profundo de la organización
cosiste en llevar a cabo la etapa de elicitación de requisitos tempranos como parte del ciclo de
desarrollo de software. Existen técnicas para la elicitación de requisitos tempranos. Estas técnicas son
las que consideran los requisitos organizacionales y se conocen también como técnicas de modelado
organizacional. El framework i* es una técnica de modelado organizacional ampliamente utilizada. Se
basa en el establecimiento de relaciones estratégicas para modelar el contexto social e intencional de
una organización. El framework i* ha sido utilizado en diferentes dominios de aplicación; por lo tanto
se han propuesto diversas variantes al framework i* original. Las variaciones están relacionadas
principalmente con la definición de elementos adicionales al framework i* o con la modificación de la
semántica de los elementos originales del mismo. Sin embargo, sin importar las diferencias
establecidas en las variantes, compartir información e integrar modelos expresados con diferentes
variantes de i* se convierte en una tarea difícil y se vuelve necesario establecer una vía de
entendimiento entre las variantes. Trabajos previos han abordado este problema desde diferentes
perspectivas, por ejemplo, a través de metamodelos o mediante un formato XML para representar
modelos de i*. Nuestro objetivo en esta tesis es investigar el rol que cumple el uso de ontologías para
llevar a cabo la integración de variantes de i*. La idea se basa en la representación de las variantes de
i* y sus modelos en términos de ontologías, propiciando su entendimiento gracias a que las
ontologías establecen un lenguaje común entre las variantes de i*. Además, con el uso de ontologías
es posible aprovechar las ventajas de las ontologías en el dominio del modelado organizacional. La
solución propuesta para guiar el proceso de integración de variantes de i* en una ontología consiste
de tres pasos principales: el primero, el desarrollo de una ontología que ha sido llamada OntoiStar
para representar los conceptos núcleo de las variantes de i* y las relaciones entre estos conceptos. El
segundo, se propone un método que proporciona una guía para generar la ontología de una variante
de i* específica, basada en la ontología OntoiStar. El método debe llevarse a cabo con cada una de las
variantes que se desea integrar. Finalmente, el tercer paso consiste en la creación de una ontología,
llamada OntoiStar+, mediante la unión de las ontologías de las variantes de i* que se desean integrar
y que fueron desarrolladas siguiendo el segundo paso. De esta manera, OntoiStar+ contiene todos los
elementos de las variantes de i* cuyas ontologías fueron unidas. Como primera aplicación de la
metodología propuesta, se llevo a cabo la integración de las variantes: i*, Tropos e i* orientado a
servicios. Conjuntamente, se desarrolló una herramienta llamada TAGOOn (Tool for the Automatic
Generation of Organizational Ontologies), la cual soporta la transformación automática de modelos
representados con las variantes: i*, Tropos e i* orientado a servicios. La funcionalidad de TAGOOn
puede ser extendida ya que se proporcionan las bases para soportar la transformación automática de
modelos representados con otras variantes de i*.

i

An Ontology-Based Approach for Integrating i* Variants

Contents
Chapter 1 Introduction... 1

1.1 Context and motivation ... 1

1.2 Problem statement .. 1

1.3 Proposed solution .. 2

1.4 Objectives.. 3

1.5 Research design ... 3

1.6 Thesis outline .. 5

Part I Background and state of the art ... 7

Chapter 2 Background.. 9

2.1 Organizational modeling .. 9

2.1.1 i* framework ... 9

2.1.2 Tropos framework ... 11

2.1.3 Service-oriented i* framework ... 13

2.1.4 Summary of the concepts of the i* variants.. 16

2.2 Ontologies ... 17

2.2.1 Applications ... 18

2.3 Model Driven Engineering ... 18

2.4 Summary ... 20

Chapter 3 State of the art... 21

3.1 Introduction .. 21

3.2 Analysis criteria ... 21

3.3 Dealing with interoperability of i* variants through the use of metamodels....................... 22

3.3.1 Towards a Unified Metamodel for i* .. 22

3.3.2 A reference model for i* .. 23

3.3.3 Towards interoperability of i* models using iStarML .. 24

3.4 Dealing with interoperability of modeling languages through the use of ontologies 25

3.4.1 Lifting Metamodels to Ontologies .. 25

3.4.2 Semantic Annotation for Process Models ... 27

3.5 From metamodels to ontologies by means of MDE .. 27

3.5.1 Bridging metamodels and ontologies in software engineering 28

ii

3.5.2 Model Driven Engineering with Ontology Technologies .. 28

3.5.3 Bridging MDA and OWL ontologies .. 29

3.6 Summary of related works ... 30

Part ll The i* variants integration methodology ... 33

Chapter 4 Development of the ontology “OntoiStar” ... 35

4.1 Introduction .. 35

4.2 Comparative analysis of i* metamodels ... 36

4.2.1 Constructs and class hierarchy of the unified metamodel for i* 36

4.2.2 Constructs and class hierarchy of the reference metamodel for i* 38

4.2.3 Comparison of the metamodels ... 40

4.2.4 Differences of the metamodels .. 42

4.2.5 Constructs and characteristics to include into the ontology OntoiStar 44

4.3 A transformation approach for the development of OntoiStar ... 48

4.3.1 Transformation rules.. 49

4.3.2 Applying transformation rules: from i* to OWL .. 50

4.3.3 Additional elements included into OntoiStar .. 55

4.4 OntoiStar with Protégé .. 56

4.4.1 OntoiStar taxonomy ... 56

4.4.2 OntoiStar metrics ... 57

4.5 Summary ... 58

Chapter 5 Development of OntoiStar+: the ontology with i* variants integrated 59

5.1 Introduction .. 59

5.2 An ontology based on OntoiStar for a specific i* variant .. 60

5.2.1 Identify additional constructs of the i* variant ... 60

5.2.2 Categorize additional constructs of the i* variant ... 60

5.2.3 Transform additional constructs of the i* variant ... 61

5.2.4 Classify additional concepts of the i* variant in the OntoiStar taxonomy 63

5.3 An ontology merging process for generating OntoiStar+ .. 65

5.4 Generating OntoiStar+ with the variants: i*, Tropos and Service-oriented i* 65

5.4.1 The ontology for i* ... 66

5.4.2 The ontology for Tropos ... 68

5.4.3 The ontology for Service-oriented i* .. 71

5.4.4 Following the ontology merging process for generating OntoiStar+............................ 77

5.5 Summary ... 79

iii

Chapter 6 Automatic transformation process: from i* based model into OntoiStar+ 81

6.1 Introduction .. 81

6.2 Description of the transformation process ... 82

6.3 The i* based model representation in the iStarML format ... 83

6.3.1 The iStarML grammar for describing i*, Tropos and Service-oriented i* models 83

6.3.2 The automatically representation of an i* model in the iStarML format 87

6.4 Mapping rules from iStarML to OntoiStar+ .. 87

6.4.1 Diagram mapping rules .. 88

6.4.2 Actor mapping rules ... 88

6.4.3 Intentional element mapping rules .. 89

6.4.4 Actor relationships mapping rules .. 90

6.4.5 Boundary mapping rules .. 91

6.4.6 Internal element relationships mapping rules .. 92

6.4.7 Dependency mapping rules .. 94

6.5 Development of TAGOOn .. 95

6.5.1 Modules of TAGOOn .. 96

6.5.2 User interface of TAGOOn .. 97

6.5.3 Interaction between modules of TAGOOn .. 97

6.5.4 The module for merging ontologies - additional module of TAGOOn 98

6.6 Summary ... 98

Chapter 7 Case study ... 99

7.1 Introduction .. 99

7.2 Description of the case study ... 99

7.3 Following the transformation process flow .. 101

7.3.1 i* based models – graphical representation ... 102

7.3.2 i* based models – in the iStarML format .. 109

7.3.3 Automatic transformation process using TAGOOn ... 114

7.4 Summary ... 120

Chapter 8 Conclusions and future work .. 123

8.1 Conclusions ... 123

8.1.1 Summary of contributions .. 125

8.2 Related publications .. 125

8.3 Future work ... 125

Bibliography .. 127

iv

List of Figures

Figure 1-1. Processes developed in this thesis ... 4
Figure 2-1. Kinds of ontologies [20] ... 18
Figure 2-2. Four layers metamodeling architecture ... 19
Figure 2-3. Common transformation flow [31] .. 20
Figure 2-4. Transformation between models in layers M1 and M2 [31] ... 20
Figure 3-1. Unified metamodel for i*... 23
Figure 3-2. Reference metamodel for i* .. 24
Figure 3-3. ModelCVS conceptual architecture .. 26
Figure 3-4. General Process Ontology .. 27
Figure 3-5. Meta ontologies and domain ontologies within the four layered architecture [11] 28
Figure 3-6. Transformation Language Bridge ... 29
Figure 3-7. Transformation from OUP to OWL ... 30
Figure 4-1. Process 1. Development of OntoiStar .. 35
Figure 4-2. Unified metamodel - Concepts class hierarchy ... 37
Figure 4-3. Unified metamodel - Relationship class hierarchy .. 38
Figure 4-4. Unified metamodel - Additional classes ... 38
Figure 4-5. Reference metamodel - Concepts class hierarchy .. 39
Figure 4-6. Reference metamodel - Relationship class hierarchy ... 39
Figure 4-7. Reference metamodel - Additional classes ... 40
Figure 4-8. OntoiStar - Concepts class hierarchy .. 46
Figure 4-9. OntoiStar- Relationship class hierarchy .. 47
Figure 4-10. OntoiStar - Additional classes .. 47
Figure 4-11. OntoiStar development architecture ... 49
Figure 4-12. OntoiStar taxonomy .. 57
Figure 5-1. Process 2. Development of OntoiStar+ .. 60
Figure 5-2. Integrating i* variants in the ontology OntoiStar+ .. 65
Figure 5-3. Ontology-i* taxonomy ... 68
Figure 5-4. Ontology-Tropos taxonomy ... 71
Figure 5-5. Ontology-Service-orientedi* taxonomy ... 76
Figure 5-6. Application of the OntoiStar+ development process .. 77
Figure 5-7. Ontology-i*&Tropos&Service-orientedi* taxonomy ... 78
Figure 6-1. Phase 2: The transformation from i* based model to OntoiStar+ 82
Figure 6-2. Transformation process flow ... 83
Figure 6-3. User interface - Open an iStarML file ... 97
Figure 6-4. Interactions between modules .. 98
Figure 7-1. i* – Strategic Dependency model for the case study .. 103
Figure 7-2. i* – Strategic Rationale model for the case study ... 104
Figure 7-3. Tropos – Actor model for the case study .. 105
Figure 7-4. Tropos – Goal model for the case study ... 106
Figure 7-5. Service-oriented i* – Global model for the case study.. 107

v

Figure 7-6. Service-oriented i* – fragment of the process model for the case study 108
Figure 7-7. Service-oriented i* – fragment of the protocol model for the case study 109
Figure 7-8. Dependencies in iStarML of the i* strategic dependency model..................................... 110
Figure 7-9. Ielement and ielementLink in iStarML of the i* strategic rationale model 111
Figure 7-10. Dependencies in iStarML of the Tropos actor model .. 111
Figure 7-11. Ielement and ielementLink in iStarML of the Tropos goal model 112
Figure 7-12. Service dependencies in iStarML of the S-O global model .. 112
Figure 7-13. Ielement and ielementLink in iStarML of the S-O process model 113
Figure 7-14. Dependencies, ielement and ielementLink in iStarML of the S-O protocol model 113
Figure 7-15. Dependency (of the i* strategic dependency model) in the ontology 114
Figure 7-16. DecompositionLink (of the i* strategic rationale model) in the ontology 115
Figure 7-17. Dependency (of the Tropos actor model) in the ontology .. 116
Figure 7-18. DecompositionLink (of the Tropos goal model) in the ontology.................................... 117
Figure 7-19. Service dependency (of the S-O global model) in the ontology..................................... 118
Figure 7-20. Process-goal relationship (of the S-O process model) in the ontology 119
Figure 7-21. DecompositionLink (of the S-O protocol model) in the ontology 120

vi

List of Tables

Table 2-1. Summary of the concepts of the i* variants .. 16
Table 3-1. iStarML tags .. 25
Table 3-2. Summary of related works .. 30
Table 4-1. Common constructs in the metamodels .. 40
Table 4-2. Particular constructs in the metamodels ... 41
Table 4-3. Reference metamodel - Class properties ... 44
Table 4-4. OntoiStar - Class properties .. 47
Table 4-5. Classes in the i* metamodel as classes in OntoiStar. ... 50
Table 4-6. Relationships in the i* metamodel as object properties in OntoiStar. 52
Table 4-7. Class properties in the i* metamodel as axioms in OntoiStar .. 53
Table 4-8. Enumeration elements in the i* metamodel as class instances in OntoiStar 54
Table 4-9. Enumeration type attributes as object properties in OntoiStar ... 54
Table 4-10. Data type attributes as data properties in OntoiStar ... 55
Table 4-11. Additional classes included into OntoiStar .. 55
Table 4-12. Additional data properties included into OntoiStar ... 55
Table 4-13. Additional object properties included into OntoiStar .. 56
Table 4-14. OntoiStar metrics .. 57
Table 5-1. Rules for integrating the constructs of an i* variant into OntoiStar 61
Table 5-2. Classification of additional constructs of an i* variant ... 64
Table 5-3. Additional concepts of i* variants ... 66
Table 7-1. Description of elements included in models of the case study .. 101
Table 7-2. Mapping rules applied for the i* strategic dependency model .. 114
Table 7-3. Mapping rules applied for the i* strategic rationale model ... 115
Table 7-4. Mapping rules applied for the Tropos actor model.. 116
Table 7-5. Mapping rules applied for the Tropos goal model ... 116
Table 7-6. Mapping rules applied for the S-O global model.. 117
Table 7-7. Mapping rules applied for the S-O process model ... 118
Table 7-8. Mapping rules applied for the S-O protocol model .. 119

vii

Acronyms

Abox It represents individuals belonging to the concepts included in a Tbox.
Ccistarml Ccistarml is a java package which allows creating, importing and checking the xml

syntax and the specific istarml syntax of istarml files.
IStarML IStarML is a specification language for representing i* based models in an XML

format.
jDom jDom is a Java representation of an XML document for easy and efficient reading,

manipulation, and writing.
Jena API Jena is an open source Java framework for building Semantic Web applications.
MDE Model Driven Engineering
OntoiStar OntoiStar is an ontology that represents the core concepts of the i* variants and

the relationships between those concepts.
OntoiStar+ OntoiStar is an ontology that contains the concepts and relationships of several i*

variants. It is based on the otology OntoiStar.
Protégé Protégé is a free, open source ontology editor and knowledge-base framework.
TAGOOn Tool for the Automatic Generation of Organizational Ontologies.
Tbox It describes a conceptualization, a set of concepts and properties for these

concepts.

 1

Chapter 1 Introduction

Introduction
This chapter introduces the research work presented in this thesis. Section 1.1 presents the
description of the context and motivation, section 1.2 presents the statement of the problem and
section 1.3 describes the proposed solution for the problem of the research work. In section 1.4 the
main objective of this thesis is described together with the specific objectives identified for the
accomplishment of the main objective. The research design is described in section 1.5 and finally,
section 1.6 presents a description of the thesis outline.

1.1 Context and motivation
Nowadays, the complexity of information systems has forced software engineers to look for
alternatives to get a deep understanding of the organization before starting the development of a
software system to automate its processes. An important alternative which efficiently helps to
achieve the deep understanding of the organization is to carry out the early requirements elicitation
stage as part of the software development cycle. Techniques are available to carry out the early
requirements elicitation. Those techniques consider the organizational requirements, and they are
also known as “Organizational modeling techniques” [1]. The i* framework [2] is a well known
organizational modeling technique that uses strategic relationships to model the social and
intentional context of an organization. It is focused on the definition of actors and dependencies
among them. Since it supports the description of organizational networks made up of social actors
who have freedom of action, and depend on other actors to achieve their objectives and goals, carry
out their tasks, and obtain needed resources. The i* framework includes a graphical notation aimed
at providing a unified and intuitive vision of the environment being modeled. The i* framework [2]
has inspired several studies and extensions. Nowadays, many research groups use the i* framework
in different application domains, such as requirements engineering, organizational patterns, agent
networks simulation and agent security patterns, among others [3]. In this context, the research
groups frequently propose variations of the i* framework in order to adapt it to their particular
domain. The variations are related with the addition of new elements to the i* framework or with the
change of the semantics of the original elements of the i* framework. The variations are recognized
as i* variants. Several i* variants have been proposed, such as Tropos [4], GRL [5], Service-oriented i*
[6] and so on. A summary of i* variants can be found in [7].

1.2 Problem statement
The diversity and heterogeneity of i* variants results in two important inconveniences: in one hand,
when someone starts to use the i* framework, it is easy to discover that there is no single definition
of the language, this causes that the use of this language becomes more difficult for the novice; in the
other hand, regardless of difference in variants, sharing information and integration of models
expressed in different i* variants becomes a difficult task [8]. Therefore, it becomes necessary to

Chapter 1. Introduction

2

establish a common definition of the core constructs of the i* variants in order to facilitate the use of
the language to the users and to establish a way of understanding between variants to facilitate to
share information between models represented with different i* variants. The issue of propitiate the
understanding between i* variants and their models has been faced at different levels, e.g. through
unified metamodels ([9] and [8]), or with an interchange format for representing i* models [3]. Our
aim in this thesis is to investigate the role of the use of ontologies to realize the integration of i*
variants, propitiating the understanding of the i* variants and the understanding of their models.

1.3 Proposed solution
With the objective of addressing the problem of diversity and heterogeneity of i* variants, a
methodology for the integration of i* variants through the use of ontologies is proposed. The main
idea is to propitiate the understanding of the i* variants and the understanding of their models by
means of their representation in a common language. The common language is provided by the
ontologies.
Recent literature [10], [11] put in relationship ontologies and the layered architecture used in the
Model Driven Engineering (MDE) approach (where models, metamodels and metametamodels
correspond to the M1, M2 and M3 layers, respectively) with the purpose of bridging models and
metamodels with ontologies. The authors specify the advantages of using ontologies, namely:
ontology linking service, where models and metamodels are transformed in terms of ontologies to
improve interoperability; querying, automated reasoning and others. In this thesis, in addition to
model integration, we aim at providing a solution, which permits bringing ontologies advantages to
the organizational modeling domain.
A methodology has been proposed for guiding the process of integrating i* variants into an ontology.
The methodology is based on three main steps: the first step corresponds to the development of an
ontology, which has been called OntoiStar, for representing the core concepts of the i* variants and
the relationships between those concepts. It is developed with the purpose of being used as a basis
for generating the ontologies for the i* variants. The second step corresponds to a method which
provides a guidance for generating the ontology for a specific i* variant. The second step must be
performed many times as necessary for obtaining an ontology of each i* variant desirable to
integrate. The third step corresponds to the creation of an ontology by merging the i* variant
ontologies obtained following the second step. This ontology thus contains all the constructs of the
merged i* variant ontologies. As a first application of the proposed solution for the problem
presented in this thesis the i* variants integration methodology has been used for integrating the
variants: i*, Tropos and Service-oriented i*. Additionally, a tool called TAGOOn – (Tool for the
Automatic Generation of Organizational Ontologies) has been developed. TAGOOn supports the
automatic transformation from an i* based model represented with the variants: i*, Tropos and
Service-oriented i* into an instantiated ontology derived from the concepts of OntoiStar+. However,
the basis to support models represented with other i* variants are provided. The proposed solution
has been carried out using MDE ideas, where the ontologies have been developed at the level of
metamodels (layer M2), and the i* based models have been transformed in terms of ontologies at the
level of models (layer M1).

1.4 Objectives

3

1.4 Objectives
The main objective of this thesis is to integrate i* variants through the use of an ontology and
automatically obtain the i* variants models represented in terms of the ontology propitiating their
understanding regardless of the variant with which they were generated.

For the accomplishment of the main objective, four specific objectives have been identified:

1. The development of an ontology for representing the core concepts of the i* variants and the
relationships between those concepts.

2. The development of an integration methodology for guiding the process of integrate into an
ontology the concepts and relationships of several i* variants.

3. The application of the integration methodology to the variants: i*, Tropos and Service-

oriented i* in order to demonstrate the effectiveness of the methodology.

4. The use of the ontology with i* variants integrated as the underlying baseline for the
automatic transformation of an i* based model into ontologies derived from the concepts of
the ontology with i* variants integrated. This, by implementing a tool to automate the
transformation process.

1.5 Research design
The main objective of this thesis is to integrate i* variants through the use of ontologies. The
proposed solution consist of the generation of an ontology for each i* variant to be integrated and
then merge the ontologies of the i* variants in order to obtain only one ontology with the i* variants
integrated. After that, an automatic transformation process is proposed in order to represent in
terms of ontologies the models generated with the i* variants.
This thesis has been developed in four processes which are presented in Figure 1-1. The processes
occur in two phases. Phase 1: The i* variants integration methodology and phase 2: The
transformation from i* based model into OntoiStar+.

Chapter 1. Introduction

4

Figure 1-1. Processes developed in this thesis

Phase 1: The i* variants integration methodology is related with the development of the ontology
called OntoiStar+ which may contains the concepts and relationships of several i* variants. This phase
is divided in two processes:

 Process 1. Development of the ontology “OntoiStar”
The starting point of the proposed methodology is related with the development of the
ontology OntoiStar. OntoiStar represents the core concepts of the i* variants and the
relationships between those concepts. It has been developed using the MDE approach. The
elements of OntoiStar have been selected from the result of a comparative analysis of two i*
metamodel proposals that deal with the diversity and heterogeneity of i* variants. The input
of the process corresponds to the i* metamodels and the output is the ontology OntoiStar.
Chapter 4 describes this process.

 Process 2. Development of OntoiStar+: the ontology with i* variants integrated
The ontology OntoiStar is the input of this process. OntoiStar is used in the second process as
the basis for building the ontology of a specific i* variant. A set of steps are proposed for
generating the specific ontology for an i* variant. Then, having two or more ontologies of
different i* variants, those ontologies may be merged in order to generate the ontology with
i* variants integrated called OntoiStar+. Chapter 5 describes this process.

Phase 2 – the transformation from i* based model into OntoiStar+ is related with the automatic
transformation process from an i* based model into instances of the ontology OntoiStar+. The
development of this phase is described in Chapter 6. The phase is divided in two processes:

 Process 3. Representing i* based models with the iStarML language.

1.6 Thesis outline

5

In this process is described the use of the iStarML specification language [3] for representing
i* based models in a XML format. The i* based models represented with the iStarML
specification language are the input of the automatic transformation process from an i*
based model into instances of the ontology OntoiStar+. This process is described in Chapter 6,
particularly in section 6.3.

 Process 4. Development of TAGOOn (Tool for the Automatic Generation of Organizational
Ontologies)
This process is related with the development of a tool for the automatic transformation from
an i* based model to an ontology derived from the concepts of OntoiStar+. The tool receives
as input an i* based model represented with the iStarML specification language as described
in process 3. The output of the tool corresponds to an instantiated ontology derived from the
concepts of OntoiStar+. The instantiated ontology represents the knowledge content in the i*
based model. This process is described in Chapter 6, particularly in sections 6.4 and 0.

1.6 Thesis outline
The remainder of this thesis is organized as follow:
Chapter 2 Background
This chapter describes the conceptual basis of this research work introducing basic concepts,
theoretical foundations and context of the thesis, such as organizational modeling, ontologies and
Model Driven Engineering (MDE).

Chapter 3 State of the art
This chapter provides a review of the state of the art of the relevant topics developed in this thesis.
Namely, interoperability of i* variants through the use of metamodels, interoperability of modeling
languages through the use of ontologies and transformations from metamodels to ontologies by
means of MDE.

Chapter 4 Development of the ontology “OntoiStar”
This chapter presents the development process of the ontology OntoiStar. OntoiStar represents the
core concepts of the i* variants and the relationships between those concepts. It has been developed
using the MDE approach. The elements of OntoiStar have been selected from the result of a
comparative analysis of two i* metamodel proposals that deal with the diversity and heterogeneity of
i* variants.

Chapter 5 Development of OntoiStar+: the ontology with i* variants integrated
This chapter describes the process for generating the specific ontology for an i* variant. The specific
ontology for an i* variant is obtained based on the ontology OntoiStar. Then, having two or more
ontologies of different i* variants, those ontologies may be merged in order to generate an ontology
with i* variants integrated. In a general way, this ontology has been called OntoiStar+. It indicates
that the ontology contains the constructs of two or more i* variants no matter which or how many
are the variants. As a first application of the methodology presented in this thesis, the integration of
the three variants: i*, Tropos and Service-oriented i* is presented in this chapter.

Chapter 6 Automatic transformation process: from i* based model into OntoiStar+

Chapter 1. Introduction

6

This chapter introduces the development of a tool called TAGOOn, (Tool for the Automatic
Generation of Organizational Ontologies), for the automatic transformation from an i* based model
into an instantiated ontology derived from the concepts of OntoiStar+. The tool receives as input a
XML file which contains the i* based model represented with the iStarML specification language [3].
The output of the tool corresponds to an instantiated ontology derived from the concepts of
OntoiStar+. The instantiated ontology represents the knowledge content in the i* based model. The
current version of the tool supports the automatic transformation of models represented with the
variants: i* [2], Tropos [4] and Service-oriented i* [6]. However, the basis to support the automatic
transformation of models represented with other i* variants are provided.

Chapter 7 Case study
This chapter describes the case study that was carried out as validation of our proposed
methodology.

Chapter 8 Conclusions and future work
This chapter summarizes the contributions of this thesis, including current and future work and the
publication associated with them.

Part I Background and state of the art

Part I

Background and state of the art

 9

Chapter 2 Background

Background
This chapter has the objective of setting the conceptual basis of this thesis introducing basic concepts,
theoretical foundations and context of the work. The chapter is organized as follows: section 2.1
presents an overview of the organizational modeling. Moreover, the i* framework, which is widely
used for organizational modeling, together with two relevant variants: Tropos and Service-oriented
i*; section 2.2 introduces the concept of ontology and some of its applications; finally, section 2.3
describes the Model Driven Engineering approach and its layered architecture.

2.1 Organizational modeling
Organizational modeling is a set of techniques used to represent and structure the knowledge of an
enterprise [12]. It is related with the description in some formal way, of a social system with its
agents, work roles, goals, responsibilities and the like [13]. Organizational modeling supports the
strategic alignment task as well as the management of planning evolution and change of business
systems and practices. It provides the means for describing the current structure of the enterprise, its
missions and objectives. Practicing software engineers are discovering the effectiveness of using
organizational modeling techniques to facilitate the elicitation of requirements for information
systems and also for guiding and supporting the software production process [6]. This because of
organizational modeling allows capturing why an information system is needed to be developed. In
this context, the i* Framework [2] is one of the most well-founded organizational modeling
techniques in use today [6]. It supports the description of organizational networks made up of social
actors who have freedom of action, but also depend on other actors to achieve their objectives and
goals. It uses strategic relationships to model the social and intentional context of an organization.
Due many research projects use the i* framework in different application domains, several extensions
to the original framework have been proposed, such as Tropos [14] [4] and Service-oriented i* [6]. In
the following sub sections a brief description of the i* framework is presented together with its
variants: Tropos and Service-oriented i*.

2.1.1 i* framework
The i* Framework [2] is one of the most well-founded organizational modeling techniques in use
today. It is a language for supporting goal oriented modeling and reasoning of requirements. The i*
framework supports the description of organizational networks made up of social actors who have
freedom of action, and depend on other actors to achieve their objectives and goals, carry out their
tasks, and obtain needed resources. It mainly focuses on:

a) The representation of social and intentional relationships among the network of actors of an
enterprise.

b) The representation of the internal behaviors required to satisfy actor dependencies.

It uses strategic relationships to model the social and intentional context of an organization. A broad
description of the i* framework is presented in the i* wiki [15].

Chapter 2. Background

10

2.1.1.1 Constructs
In this section are described all the constructs that are part of the i* framework.
Actor: an actor is an abstract description of an intentional entity. Also it can represent abstractions
over actors, such as roles and positions. The types of actors are:

 Agent: Agent is an actor with physics and concretes manifestations, such as a human
individual. An Agent can play a role.

 Role: Role is an abstract characterization of the behavior of a social actor within some
specialized context or domain of endeavor. The dependencies associated with a role apply
regardless of the agent who plays the role.

 Position: Position is a set of roles typically played by one agent. An agent occupies a position.

Actor association Links: An actor association link represents a relationship between actors. The types
of actor association links are:

 Is part of: it is used when an actor is part of another actor. Roles, position and agents can
each have subparts.

 Is a: it is used to represent a generalization, with an actor being a specialized case of another
actor.

 Plays: it is used between an Agent and a Role, with an Agent playing a Role.
 Covers: it is used to describe the relationship between a Position and the Roles that it covers.
 Occupies: it is used to show that an Agent occupies a Position, meaning that the Agent plays

all of the roles that are covered by the Position.
 Instance of: it is used to represent a specific instance of a more general entity. An agent is an

instantiation of another Agent.

Dependency: A dependency is a relationship which represents the explicit dependency of an actor
(depender) respect to other actor (dependee). The dependency is expressed with respect to an
intentional element (dependum). The types of dependencies are:

 Goal dependency
 Task dependency
 Resource dependency
 Softgoal dependency

Actor Boundary: An actor boundary indicates intentional boundaries of a particular actor. All of the
elements within a boundary for an actor are explicitly desired by that actor. In order to achieve these
elements, often an actor must depend on the intentions of other actors, represented by dependency
links across actor boundaries.

Intentional element: An intentional element is an entity which allows to relate different actors
conforming a social network or, also, to express the internal rationality of an actor. The types of
intentional elements are:

 Goal: Represents and intentional desire of an actor, the specifics of how the goal is to be
satisfied can be described through task decomposition.

 Softgoals: Softgoals are similar to goals except that the criteria for the goal's satisfaction are
not clear-cut, it is judged to be sufficiently satisfied from the point of view of the actor.

 Task: The actor wants to accomplish some specific task, performed in a particular way.

2.1 Organizational modeling

11

 Resource: The actor desires the provision of some entity, physical or informational.
 Belief: A belief is a condition about the world that the actor holds to be true. A belief is

distinct from a goal in that the actor has no explicit desire to make the specified condition
become true.

Intentional element relationship: An intentional element link represents an n-ary relationship
among intentional elements. The types of intentional element relationship:

 Means-End: These links indicate a relationship between an “end”, and a “means” for attaining
it. The “means” is expressed in the form of a task and the “end” is expressed as a goal.

 Decomposition: A task element is linked to its component nodes by decomposition links. A
task can be decomposed into four types of elements: a subgoal, a subtask, a resource, and/or
a softgoal. The task can be decomposed into one to many of these elements.

 Contribution: Contribution Links are: make, some+, help, break, some-, hurt, unknown, and,
and or. Any of these contribution links can be used to link any of the elements to a softgoal to
model the way in that any of these elements contributes to the satisfaction or fulfillment of
the softgoal.

2.1.1.2 i* models
The i* framework provides a visual language which includes two models that complement each other:

 Strategic dependency (SD) model: the SD model is used to express the network of intentional,
strategic relationships among actors. SD diagrams depict the strategic dependencies between
actors, but do not depict the internal rational behind these dependencies.

 Strategic Rationale (SR) model: The SR model is a graph, with several types of nodes and links
that work together to provide a representational structure for expressing the rationales
behind dependencies. SR diagrams open up actors and show all the internal elements,
including goals, softgoals, tasks, and resources that contribute to the analysis of alternatives
and fulfillment of the dependencies.

2.1.2 Tropos framework
The Tropos framework [14] [4] is a software engineering methodology for building agent oriented
systems. It is founded on the i* modeling framework [2]. The Tropos methodology pays particular
attention to the analysis of the environment within which the system-to-be will eventually operate,
resting on the idea of building a model of the environment and the system. Tropos adopts a model
driven approach. The methodology guides the software engineer in building a conceptual model,
which is incrementally refined and extended, to support different development tasks from early
requirements to detailed system design and implementation. The two novel features of Tropos are:

1. The notions of agent, goal, plan and various other knowledge level concepts are fundamental
primitives used uniformly throughout the software development process.

2. A crucial role is assigned to requirements analysis and specification when the system-to-be is
analyzed with respect to its intended environment.

Requirements analysis in Tropos is split in two main phases: Early Requirements and Late
Requirements analysis. The five main development phases of the Tropos methodology are:
Early Requirements: during this phase the relevant stakeholders are identified, along with their
respective objectives; stakeholders are represented as actors, while their objectives are represented
as goals.

Chapter 2. Background

12

Late Requirements: the system-to-be is introduced as another actor and is related to stakeholders’
actors in terms of actor dependencies; these indicate the obligations of the system towards its
environment, also what the system can expect from actors in its environment.
Architectural Design: This phase defines the system’s global architecture in terms of sub-systems
(actors) interconnected through data and control flows (dependencies).
Detailed Design: This phase deals with the specification of the agents’ micro level. Agents’ goals,
beliefs, and capabilities, as well as communication among agents are specified in detail.
Implementation: The Implementation activity follows the detailed design specification on the basis of
the established mapping between the implementation platform constructs and the detailed design
notions.

2.1.2.1 Concepts
Tropos is founded on the i* modeling framework [2]. Therefore, many concepts share their definition
in both frameworks. The concepts of Tropos are described below, when a concept has the same
definition from a concept of the i* framework it is indicated in order to do not duplicate the definition
presented in section 2.1.1.1.
Actor: An actor models an entity that has strategic goals and intentionality. An actor represents a
physical agent or a software agent as well as a role or a position. Tropos has the same types of actors
of i* framework: Agent, Role and position.

Actor association Links: an actor association link represents a relationship between actors as in the i*
framework. However, Tropos do not include all the types of actor association links. The types
included in Tropos are:

 Occupies
 Covers
 Plays

The definition of the actor association links of Tropos have the same definition as those of the i*
framework.

Dependency: A dependency in Tropos is equivalent to a dependency in the i* framework. It includes a
depender, a dependee and a dependum.
The types of dependencies are:

 Goal dependency
 Plan dependency
 Resource dependency
 Softgoal dependency

Actor boundary: an actor boundary in Tropos is equivalent to an actor boundary in i* framework.
However, when the actor boundary is expanded and its internal elements are associated to a
dependency Tropos use the WHY label to express a link between an internal element and a
dependency. This label appears when an internal element depends on an external actor to provide a
resource, perform a task, achieve a goal, or accomplish a softgoal. Moreover, every external
dependency is repeated inside the actor boundary and it is refined or related to other internal
elements according to Tropos constraints.

2.1 Organizational modeling

13

Intentional element: An intentional element in Tropos is equivalent to an intentional element in i*
framework. The types of intentional elements are:

 Hardgoal equivalent to goal in the i* framework.
 Softgoal equivalent to softgoal in the i* framework.
 Plan equivalent to a task in the i* framework.
 Resource equivalent to a resource in the i* framework.
 Capability: it represents the ability of an actor to define, choose and execute a plan to fulfill a

goal, given a particular operating environment.
 Belief: it is used to represent each actor’s knowledge of the world.

Intentional element link: An intentional element link in Tropos is equivalent to an intentional element
link in i* framework. The types of internal elements in Tropos are also the same: Means-End,
Decomposition and Contribution. However their semantic is different.

 Means-End: These links indicate a relationship between an “end”, and a “means” for attaining
it. The “means” can be any element, and the “end” is expressed as a goal or softgoal.

 Decomposition: plan, goal or softgoal can be root and a sub element of the same type as leaf,
i.e. task to task, goal to goal and softgoal to softgoal. This relationship has a semantic of AND-
decomposition or OR-decomposition.

 Contribution: Contribution Links are: ++, +, --, -. Any of these Contribution Links can be used
to link any of the elements to a goal or Softgoal to model the way any of these Elements
contributes to the satisfaction or fulfillment of the goal or Softgoal.

2.1.2.2 Tropos models
The Tropos framework provides a visual language which includes two models that complement each
other:

 Actor model: the actor model is used to express the network of intentional relationships
among actors of the environment and the system’s actors and agents. Actor’s diagrams
depict the actors, their goals and the network of dependency relationships among actors.

 Goal model: The goal model is a graph, with several types of nodes and links that work
together to provide a representational structure for expressing the rationales behind
dependencies. Goal diagrams open up actors and show all the internal elements, including
goals, softgoals, plans, and resources that contribute to the analysis of alternatives and
fulfillment of the dependencies.

2.1.3 Service-oriented i* framework
The service-oriented approach for i* [6] is a methodological extension of the i* framework that use all
the social and intentional characteristics of i*. This approach is based on the hypothesis that it is
possible to focus the organizational modeling activity on the values (services) offered by the
enterprise to their customers. Following this hypothesis, the proposed method provides mechanisms
to guide the organizational modeling process based on the business service viewpoint. Using the
proposed approach, the monolithic structure of the i* strategic rationale model can be broken
down into several business services. These business services can be used as the basic granules of
information that allow us to encapsulate a set of i* business process models. The modeling process
starts eliciting the services that the enterprise offers to end customers. The following step consists of
determining the way in which the business services satisfy the goals of the enterprise. Once the

Chapter 2. Background

14

services have been elicited, each service is refined in a set of business processes needed to perform
it. The idea of this approach is to introduce a precise conceptual hierarchy consisting of business
services that are refined in business processes, which are finally expanded in what the author calls
business protocols. These protocols constitute the lower-level of the service description.

2.1.3.1 Concepts
Service-oriented i* is founded on the i* modeling framework [2]. Therefore, many concepts share
their definition in both frameworks. The concepts of Service-oriented i*are described below, when a
concept has the same definition from a concept of the i* framework it is indicated in order to do not
duplicate the definition presented in section 2.1.1.1.

Business actor: An actor models an independent intentional organizational entity (person, functional
area, department, or enterprise) that uses or offers services. The actor has strategic goals and
intentionality within the organizational setting. The types of actors are the same than in the i*
framework: Agent, Role and position.

Business Service: it is a self-contained, stateless business functionality that an actor called “provider”
offers to potential customers through a well defined interface. A business service is a high-level
description of basic, cohesive and relevant activities of a given organization. There are composite
services and basic services. A composite service aggregates multiple services and implements
mechanisms that coordinate the aggregated services. A basic service is decomposed in processes
without further decomposition.

Business Process: This concept represents a set of structured activities for producing a specific
business service for a particular customer. A process can be transactional or no transactional.

Actor association Links: An actor association link in Service-oriented i* is equivalent to an actor
association link in the i* framework. Service-oriented i* includes all the actor association links from i*,
and additionally it includes the actor association link “subordination”.

 Subordination: it represents the capability of an actor to assign responsibilities to its
subordinates. If an actor subordinates another actor, then the first can delegate activities to
the latter.

Dependency: A dependency in Service-oriented i* is equivalent to a dependency in the i* framework.
It includes a depender, a dependee and a dependum. Service-oriented i* includes all the types of
dependencies from i*, and additionally it includes the Service dependency.

 Service dependency: The service provider and customer must be associated through a goal
dependency indicating that the customer depends on the provider in order to satisfy a certain
goal through a specific service.

Actor Boundary: A boundary in Service-oriented i* is equivalent to an actor boundary in i*
framework.

Intentional element: An intentional element in Service-oriented i* is equivalent to an intentional
element in i* framework. The types of intentional elements are:

 Goal equivalent to goal in the i* framework.

2.1 Organizational modeling

15

 Softgoal equivalent to softgoal in the i* framework.
 Task equivalent to a task in the i* framework.
 Resource equivalent to a resource in the i* framework.

Intentional element relationship: An intentional element link in Service-oriented i* is equivalent to an
intentional element link in i* framework. The types of internal elements in Service-oriented i*are also
the same: Means-End, Decomposition and Contribution. However their semantic is different.

 Decomposition relationship: plan, goal or softgoal can be root and a sub element of the same
type as leaf, i.e. task to task, goal to goal and softgoal to softgoal. This relationship has a
semantic of AND-decomposition or OR-decomposition.

 Contribution: Contribution Links are: ++, +, --, -. Any of these Contribution Links can be used
to link any elements of different and same types.

 Means-End: These links indicate a relationship between an end, and a means for attaining it.
This relationship is a polymorphic relationship that is used to associate only elements of
different types.

Additional relationships: the Service-oriented i* framework establish additional relationships to the i*
framework. Especially because it Service-oriented i* introduces the concepts of business service and
business process. The relationships are:

 Service relationship: A service relationship connects a composite service with multiple basic
services. There are four ways to connect the services: mandatory, optional, alternative, or.

 Service-goal relationship: A service-goal relationship indicates that a service is associated with
a specific goal of the provider of the service.

 Process relationship: A process relationship indicates that a process depends of other process
to be executed.

 Process dependency: The process dependency represents the process association with a
specific service. The process dependency indicates that the requester delegates to the
provider with the responsibility to perform the process.

2.1.3.2 Service-oriented i* models
The business service architecture is composed of three complementary models that offer a view of
what an enterprises offers to its environment and what enterprise obtains in return:

 Global model: this model represents all the services offered by the enterprise without details
about their implementation (high-level view). The global model has two different views:

o Abstract view: only shows the actors and their offered business services.
o Concrete view: the offered business services are linked with the internal goals of the

provider actor.
The global model permits the representation of the business services and the actors that play
the role of requester and provider.

 Process model: the services must be decomposed into a set of concrete processes that
perform them. This model provides the mechanisms required to describe the flow of multiple
processes. A process model represents a view of the processes needed to satisfy a service but
without giving details of its implementation.

Chapter 2. Background

16

 Protocol model: the semantics of the protocols and transactions of each business process are
represented in an isolated diagram using the i* conceptual constructs. Each business process
is detailed through a business protocol model. This model provides a description of a set of
structured and associated activities that produce a specific result or product for a business
service. This model is represented using the redefinition of the i* modeling primitives.

2.1.4 Summary of the concepts of the i* variants
In Table 2-1, a summary of the concepts that are part of the i* variants is presented.

Table 2-1. Summary of the concepts of the i* variants

Concept
i* Tropos Service-oriented i*

Type Values Type Values Type Values
Actor Agent, role,

position
 Agent, role,

position
 Agent, role,

position

Relationships
among actors

Is_part_of
Is_a
Plays
Covers
Occupies
ins

 Plays
Covers
Occupies

 Is_part_of
Is_a
Plays
Covers
Occupies
Ins
subordination

Dependency Goal
Softgoal
Task
Resource
Belief

Dependency
Strength
(open,
committed,
critical)

Goal
Softgoal
Plan
Resource

 Goal
Softgoal
Task
Resource
Service
Process

Dependency
Strength
(open,
committed,
critical)

Boundary
Intentional
element

Goal
Softgoal
Task
Resource

 Goal
Softgoal
Plan
Resource

 Goal
Softgoal
Task
Resource
Service
Process

intentional
element
relationship

MeansEnd MeansEnd MeansEnd

Contribution Make, help,
some+,
break, hurt,
some-,
unknown,
and, or

Contribution +/-/++/-- Contribution Make, help,
some+,
break, hurt,
some-,
unknown,
and, or

Decomposition Decomposition And, or Decomposition

 Service dependency
Service relationship
Process relationship
Process
Dependency Service
Goal relationship

2.2 Ontologies

17

In the following subsections the rest of the concepts that are relevant within the context of this thesis
are presented.

2.2 Ontologies
Ontology is "an explicit representation of conceptualization" [16] where a conceptualization is seen as
an abstract, simplified view of the world wished to be represented for some purpose. The view of the
world is often conceived as a set of concepts (e.g. entities, attributes, and processes), their definitions
and their inter-relationships. Another definition of the term ontology is presented in [17]: “Ontologies
are defined as a formal specification of a shared conceptualization”. In [18] the authors present a
merged and extended definition of [16] and [17]: ‘‘Conceptualization refers to an abstract model of
some phenomenon in the world by having identified the relevant concepts of that phenomenon.
Explicit means that the type of concepts used, and the constraints on their use are explicitly defined.
Formal refers to the fact that the ontology should be machine readable. Shared reflects the notion
that an ontology captures consensual knowledge, that is, it is not private of some individual, but
accepted by a group’’. Besides, ontologies consist of a set of inference rules from which machines can
make logical conclusions. An ontology together with a set of individual instances of classes constitutes
a knowledge base. A knowledge base consist of the terminological knowledge (called Tbox), which
represents the background knowledge and the knowledge about the terminology (classes and
properties) of a domain, in this case the ontology; and the assertional knowledge (called Abox), which
contains knowledge about the individuals which populate the given domain, in this case the set of
individual instances of classes of the ontology.
In [19] three main categories of uses for ontologies are identified:

 Communication: in communication an ontology plays the role of: reducing conceptual and
terminological confusion by providing a unifying framework within an organization; providing
unambiguous definitions for terms used in a software system; integrating or combining data
and/or information from multiple heterogeneous sources.

 Interoperability: to assist interoperability, ontologies can be used to support translation
between different languages and representations. Ontologies are applied when different
users need to exchange data or who are using different software tools. Ontologies can be
integrated from different domains in order to support some task.

 Systems engineering: ontologies can support the design and development of software
systems: A shared understanding of the problem and the task at hand can assist in the
specification of software systems; ontologies provide an “easy to reuse” library of class
objects for modeling problems and domains.

Different kinds of ontologies can be developed based on their level of generality [20] as follows:

 Top-level ontologies describe very general concepts like space, time, matter, object, event
and action. They are independent of a particular problem or domain. Top-level ontologies in
some literature are also called upper-level ontologies.

 Domain ontologies describe the vocabulary related to a generic domain (like medicine, or
automobiles).

 Task ontologies describe generic tasks or activities (like diagnosis or selling).
 Application ontologies describe concepts depending both on a particular domain and task.

The kinds of ontologies are represented in

Chapter 2. Background

18

Figure 2-1, where thick arrows represent specialization relationships.

Figure 2-1. Kinds of ontologies [20]

The concepts in domain ontologies and task ontologies are specialized from the ones in the top-level
ontology. Application ontologies are often specializations of both domain ontologies and task
ontologies. Such classification can be reflected into the four layer meta-data architecture mentioned
previously, i.e. top-level ontologies are at M2 and domain and task ontologies are at M1 and
application ontologies are at M0. Domain, task and application ontologies about a certain domain
usually construct the general context of the systems in that domain [21].

2.2.1 Applications
Ontologies are recognized to be an important component of information systems that supports
business processes within and across organizations. At modeling time, ontologies can be used to
identify and describe key elements from business processes, such as data, activities and profiles
involved in the process itself (e.g. [22]). At development time, the structure of an ontology can be
translated automatically into information system source code by using an appropriate development
support environment, as described for instance in [23] where business knowledge represented as
OWL ontology is automatically translated into an information system implemented in the Mercury
programming language, therefore if changes of a business process is reflected in the ontology, the
information system will also automatically reflect that changes. At run time, ontologies can add
semantics to specify the behavior of the business process [24]. For instance, by using queries and
reasoning to retrieve proper data for decision making or for process validation (e.g., [25, 26, 27]).

2.3 Model Driven Engineering
Model-driven engineering (MDE) is an approach to software development that recognizes a key role
to conceptual model describing the system to be developed, which should be created first. These
models correspond to different abstraction levels, higher level models are transformed into lower
level models until obtain an executable system. MDE is an approach still in evolution. In [28]
systematic review of MDE is presented, with the purpose of providing a background and identifying
gaps in current MDE research.
Research areas related with MDE concern the design and specification of modeling languages, since
models are described by modeling languages, where modeling languages themselves are described by
so called metamodeling languages [10]. A model can be an artifact formulated in some modeling

2.3 Model Driven Engineering

19

language, a XML file and also code in a specific programming language. A general definition of models
in MDE is: “a description of (part of) a system written in a well defined language” [29]. In [30] the
three most important kinds of models for MDE were defined, these models refer to the development
stages of software going from the problem space to the implementation solution:
Computational Independent Model (CIM): A CIM is a view of the system from the computation
independent viewpoint. A CIM does not show details of the structure of systems and it is sometimes
called a domain model.
Platform Independent Model (PIM): is a view of a system from the platform independent viewpoint.
A PIM exhibits a specified degree of platform independence so as to be suitable for use with a
number of different platforms of similar type. This kind of models does not have relation with any
implementation technology.
Platform Specific Model (PSM): is a view of a system from the platform specific viewpoint. A PSM
combines the specifications in the PIM with the details that specify how that system uses a particular
type of platform.
MDE is based on the four layers metamodeling architecture [31] presented in Figure 2-2.

Figure 2-2. Four layers metamodeling architecture

This architecture consists of a hierarchy of model levels, each (except the top) being
characterized as “an instance” of the level above. The bottom level, also refers as M0 contains the
“user data” in the application, i.e., the actual data objects the software is designed to manipulate, for
example the instances populating an object-oriented system at run time or the rows in a relational
database table). The layer M1 contains the model of the data in MO, i.e., the metadata of the
application, for example the classes of an object-oriented system or the table definition of a relational
database. The layer M2 contains the model of the information at M1, i.e., the meta-metadata that
describes the properties that metadata may exhibit (e.g. UML elements, such as class, attribute,
operation). The metamodels are presented in this layer. A metamodel is a description or definition of
a well-defined language in the form of a model. Finally, the layer M3 contains a model of the
information at M2, i.e., the meta-meta metadata that describes the properties that meta-metadata
can exhibit. The metametamodels are presented in this layer. In the same way models are defined in
conformance with their metamodel, metamodels are defined by means of a metametamodel
language. A metamodel is said to conform to the metametamodel.
In order to obtain an executable system, models of higher levels of abstraction are transformed into
models of lower level of abstraction through the use of transformations. A transformation is defined
as a set of transformation rules which together describe how a model (e.g. a CIM) conforming to the
source metamodel can be transformed into a model (e.g. a PIM) conforming to the target

Chapter 2. Background

20

metamodel. A transformation rule is a description of how one or more constructs in the source
metamodel can be transformed into one or more constructs in the target metamodel [10].
Transformations are a key aspect in MDE since it possible to reuse the work done in a transformation
for other models. The common transformation flow is presented in Figure 2-3.

Figure 2-3. Common transformation flow [31]

The boxes are transformations. Those boxes labeled with M2M are referring to the acronym Model to
Model transformation and the one labeled with M2T is referring to Model to Text transformation. In
Figure 2-4 are presented the transformation between models within the four-layer metamodel
architecture. The transformation is defined in the M2 level by specifying a mapping between the
elements of metamodels and the transformation is applied to the M1 level models.

Figure 2-4. Transformation between models in layers M1 and M2 [31]

One central contribution of MDE is about domain modeling. This idea was presented in [32], where is
established the need of Domain-Specific Languages (DSLs). A DSL is a language dedicated to a
particular problem domain, therefore with DSLs in the context of MDE is possible to use a collection
of metamodels (each of a specific domain) to capture various facets of a system under construction or
under maintenance.

2.4 Summary
This chapter has outlined the conceptual basis of this research work. The theoretical foundations and
context of the work has been presented. First a brief description of organizational modeling was
depicted. The i* framework and two of its relevant variants have been described. The concepts and
relationships of each variant and their models were included in the description. Moreover, a
summary of the concepts and relationships of each variant have been described in a table in order to
visualize the differences and similarities. The concept of ontology was presented for illustrating what
is an ontology, its uses, the types of ontologies and some application domains. Finally, the concept of
Model Driven Engineering was introduced, describing the type of models, the four layered
architecture, and the process of transformations between models.

 21

Chapter 3 State of the art

State of the art

3.1 Introduction
This section introduces a brief overview of the state of the art in the research areas that are
considered to be relevant to this work. In section 3.2 analysis criteria are presented for setting up a
way that enables the evaluation of the applicability of the approaches in this thesis work. In the
following sections start the description of the related works. Section 3.3 addresses the topic related
with the interoperability of i* variants. Due to the growing interest around the i* framework, several
extensions to the original framework have been defined, and in parallel, many efforts have been
carried out to achieve interoperability between these i* variants. Three proposals that deal with the
interoperability problem are presented in this study. The first two proposals have the objective of
providing a metamodel for dealing the heterogeneity of i* variants and the third proposal introduces
a XML interchange format for representing i* models, coming from the main i* variants, enabling
interoperability between them. In section 3.4 is addressed the topic related with improving the
interoperability of modeling languages through the use of ontologies. Two proposals that provide a
way to represent modeling languages in terms of ontologies are presented. In section 3.5 is addressed
the topic related with merging two technologies: Model Driven Engineering (MDE) and ontologies.
Three proposals that provide a way for transforming metamodels into ontologies through the MDE
approach are presented. Finally, in section 3.6 a summary of the proposals is presented according the
analysis criteria to illustrate the relevance of each related work to this thesis.

3.2 Analysis criteria
Each related work presented in the state of the art has been described according analysis criteria for
setting up a way that enables the evaluation of the applicability of the works to this thesis. The
analysis criteria are: summary of the approach, application domain, languages used, contributions,
solution architecture or diagram results and contributions to this thesis. The analysis criteria are
detailed below. It is important to note that if one criterion is not applicable to a specific work, it is
omitted.

Approach: this criterion describes the approach of the research work. It is presented for given to the
reader a feeling for what the related work is all about.

Application domain: this criterion describes the application domain of the contributions of the
related work.

Languages used: this criterion describes the modeling languages and/or ontology languages used in
the related work.

Chapter 3. State of the art

22

Contributions: this criterion describes the contributions of the related work: the final results or the
solution method for achieving the results of the related work.

Solution architecture or diagram results: this criterion describes the solution or results of the related
work in a graphical view including the components involved and the relationship between them.

Contributions to this research work: this criterion describes the contributions of the related work to
the research work presented in this thesis.

3.3 Dealing with interoperability of i* variants through the use of
metamodels

The i* framework [2] is a well known organizational modeling technique, that inspired several studies
and extensions. It uses strategic relationships to model the social and intentional context of an
organization. Nowadays, many research projects use the i* framework in different application
domains, hence many i* variants have been proposed, such as Tropos [4], GRL [5], Service-oriented i*
[6] and so on. Sharing information and integration of models expressed in i* variants imply
interoperability problems. Therefore, many efforts have been carried out to solve them. Three
proposals that deal with the interoperability problem of i* variants are presented in this section.

3.3.1 Towards a Unified Metamodel for i*
In this work [9] the authors introduce a unified metamodel for the i* framework developed with the
purpose of dealing the heterogeneity of i* variants. The metamodel includes the constructs of two
representative variants: i* and Tropos. The authors carried out an analysis of the differences and
similarities of the two variants. As a result of the analysis, they proposed a metamodel trying to cover
the unification of both variants. Moreover, they propose a guideline for facilitating the extension of
the metamodel with constructs of others i* variants. The particularities of each variant are
represented with a set of operations and constraints by using OCL constraint language [33]. These
operations and constraints are useful to generate the metamodel of each variant by adding,
removing, renaming or modifying the constructs included in the unified metamodel for i*. They
define some constraints for establishing which constructions in the specific metamodel of each
variant are or are not allowed. In Figure 3-1 is presented the unified metamodel for i*.

3.3 Dealing with interoperability of i* variants through the use of metamodels

23

Figure 3-1. Unified metamodel for i*

This work is relevant for this thesis because the metamodel include common constructs of the i*
framework. In this thesis, an analysis of i* metamodels is considered in order to define the constructs
to include into the proposed ontology OntoiStar. Moreover, the guideline for facilitating the
extension of the metamodel with constructs of others i* variants is useful for the definition of an
integration method for obtaining the ontology of a specific i* variant.

3.3.2 A reference model for i*
In this work [8] the authors introduce a reference metamodel for the i* framework developed with
the purpose of dealing the heterogeneity of i* variants. They carried out an analysis of the differences
and similarities of several i* variants. As a result of the analysis, they proposed a metamodel which
contains the constructs that are part of the intersection of the three variants: i*, Tropos and GRL.
Additionally the authors integrate in the metamodel concepts not common to the three main variants
but that they consider worth including because these concepts may be used in future variants. The
particularities of each variant are represented with a set of operations and constraints by using OCL
constraint language [33]. These operations and constraints are useful to generate the metamodel of
each variant by adding, removing, renaming or modifying the constructs included in the reference
metamodel for i*. They define some constraints for establishing which constructions in the specific
metamodel of each variant are or are not allowed. In Figure 3-2 is presented the reference
metamodel for i*.

Chapter 3. State of the art

24

Figure 3-2. Reference metamodel for i*

This work is relevant for this thesis because the metamodel include common constructs of the i*
framework. In this thesis is considered an analysis of i* metamodels to define the constructs to
include into the proposed ontology OntoiStar.

3.3.3 Towards interoperability of i* models using iStarML
In this work [3] the authors presents the iStarML specification language which has been proposed as a
practical solution for the i* variants interoperability problem. The main objective of iStarML is to
provide a representation of diagrams where differences and similarities among i* variants are explicit
generating a common representational framework for i* variants diagrams. IStarML is a XML
interchange format which includes six basic categories of core concepts, common to all of i* variants.
The core concepts have been selected based on the reference metamodel for i* presented in Figure
3-2. Each concept has been represented with an iStarML tag. The variations of concepts in the i*
variants are represented by means of the attributes of each tag. The attributes contain open options
which permit to express those additional concepts of an i* variant that were not considered in the
specification of iStarML. In order to provide additional features there are especial tags which are not
part of any related proposal of i*. These tags have been included with topics related the use of XML in
a context of storing and recovering i* diagrams. The main tags of iStarML are presented in Table 3-1.

3.4 Dealing with interoperability of modeling languages through the use of ontologies

25

Table 3-1. iStarML tags

Concept XML tag Attributes
Actor <actor> “Type”: role, position, agent, string.
Intentional element <ielement> “Type”: goal, softgoal, resource, task, string.

“State”: undecided, satisfied, weakly
satisfied, denied, weakly denied.

Dependency <dependency>
<depender> “Value”: open, committed, critical,

delegation, permission, trust, owner, string. <dependee>
Boundary <boundary> “Type”: string.
Intentional element link <ielementLink> “Type”: decomposition, means-end and

contribution, string.
 “Value”: and, or (in case of type
decomposition), +, -, sup, sub, ++, --, break,
hurt, some-, some+, unknown, equal, help,
make, and, or (in case of type contribution)
and string.

Actor link <actorLink> “Type”: is_a, is_part_of, occupies, covers,
instance, plays, and string.

i* markup language file <istarml> Version=“1.0”
Diagram <diagram> “Author”, “id”, “name”.

This work is relevant for this thesis because the iStarML specification language is used for
representing the i* based models in a represented in a computer language. The i* based models
represented in the iStarML specification language are the input of the proposed automatic
transformation tool of this thesis.

3.4 Dealing with interoperability of modeling languages through the use of
ontologies

Sharing information and integration of models developed with different modeling languages implies
the use of techniques for improving their interoperability. One way to achieve the interoperability is
to capture the semantics of modelling language constructs. This can be achieved by mapping the
modelling language constructs to semantic models, such as ontologies. Two proposals that deal with
the interoperability of modeling languages through the use of ontologies are presented in this
section.

3.4.1 Lifting Metamodels to Ontologies
The objective of this work [34] is to achieve the integration of modeling languages and development
tools for improving the effectiveness of software development processes. The authors propose a
process which semi-automatically transforms metamodels into ontologies expressed in the OWL
language. The idea is to create ontologies from metamodels but making implicit concepts presented
in the metamodel explicit in the resultant ontology and to incorporate to the resultant ontology
additional information for improving the integration of the modeling language represented with the
ontology. The process consists of three steps.

Chapter 3. State of the art

26

1. Conversion. A metamodel is transformed into an ontology. The transformation is given by a
mapping between the model engineering space and the ontology engineering space. This
transformation results in what the authors call a pseudo-ontology.

2. Refactoring. A set of patterns are proposed and applied to the resulting pseudo-ontology with
the purpose of unfolding typically hidden concepts in metamodels that should better be
represented as explicit concepts in an ontology. An example of this patterns is described
below:

a. Association Class Introduction: A modeling concept might not be directly represented
by object properties but rather hidden within an association. In particular, it might be
represented by the combination of both properties representing the context in which
these object properties occur. A new class is introduced in the ontology similar to an
association class in UML to explicitly describe the hidden concept. Since there is no
language construct for association classes in OWL, the association is split up into two
parts which are linked by the introduced class.

3. Enriching the ontology with axioms. Semantic enrichment refers to incorporating additional
information into ontologies for integration purposes.

The authors are currently developing a tool called ModelCVS which implements the proposed
approach for mapping Ecore, which is the metametamodel used in the Eclipse Modeling Framework
(EMF) to the Ontology Definition Metamodel (ODM) [35]. ModelCVS enables tool integration through
transparent transformation of models between metamodels representing different tools’ modeling
languages. In Figure 3-3 is presented the conceptual architecture of the ModelCVS tool. The
implementation of the lifting process steps is visible on the upper right hand of the image.

Figure 3-3. ModelCVS conceptual architecture

This work is relevant for this thesis because the proposed set of patterns for making implicit concepts
in a metamodel explicit in an ontology are useful for the development of our proposed ontology
OntoiStar where a transformation is defined from a metamodel to OntoiStar. Implicit concepts in the
i* metamodel are explicit concepts in OntoiStar.

3.5 From metamodels to ontologies by means of MDE

27

3.4.2 Semantic Annotation for Process Models
In this work [21] the author proposes a semantic annotation process for facilitating the
interoperability of process modeling. The idea is to annotate the process modeling constructs looking
for a semantic reconciliation of constructs from different process modeling languages. For achieving
the semantic annotation an ontology which provide common and core semantics of process modeling
constructs is developed. The ontology is called General Process Ontology (GPO). For the development
of the GPO the author investigated several process modeling languages. As a result of the study the
defined concepts to integrate in GPO are Activity, Artifact, Actor-role, Input, Output, Precondition,
Postcondition, Exception andWorkflowPattern. The annotation process is carried out in the
metamodel level. The procedure of metamodel annotation consists of setting mapping rules between
the GPO concepts and process modeling language constructs (which are the metamodel elements).
The mapping rules involve of both one-to-one and one-to-many correspondences between the GPO
concepts and modeling language constructs. Once the mapping rules are defined for a certain process
modeling language, process models in that process modeling language can be described by the GPO
concepts, i.e. the GPO concepts are used as metadata to annotate process semantics. In Figure 3-4 is
presented the General Process Ontology.

Figure 3-4. General Process Ontology

This work is relevant for this thesis because the methodology followed for the development of the
GPO and for selecting its elements is useful for the development of our proposed ontology OntoiStar.
Moreover, the definition of the mapping rules is useful for guiding the proposed set of transformation
rules used for transforming the i* metamodel into the Ontology OntoiStar.

3.5 From metamodels to ontologies by means of MDE
Metamodels and Ontologies are two technologies being developed in parallel, but by different
communities. Ontologies have been increasingly investigated by software engineering researchers,
with the idea of representing metamodels. The use of ontologies in software modeling brings the
advantages of ontologies to the software modeling domain. Namely: ontology linking service, where
models and metamodels are transformed in terms of ontologies to improve interoperability;
querying, automated reasoning and others. Three proposals that transform metamodels into
ontologies are presented in this section.

Chapter 3. State of the art

28

3.5.1 Bridging metamodels and ontologies in software engineering
In this work [11] the authors present a study of the literature related with metamodels and
ontologies. They analyzed the kinds of ontologies that are useful in software engineering and the
relationships of ontologies with the concept of model and metamodel derived from the Model Driven
Architecture approach. Based on the study carried out, the authors proposed the classification of
ontologies in two broad areas: domain ontologies and metaontologies or foundational ontologies
(high level ontologies). Domain ontologies are used to create a vocabulary for a specific application
domain and are crucial to ensure that elements in the model have well defined semantic; and
metaontologies or foundational ontologies, are used to describe very general concepts like space,
time, matter, object, event and action and thus encapsulate the concepts needed for creating domain
ontologies. Additionally to the classification of ontologies they proposed the level to situate these
types of ontologies in the four layered architecture of the OMG [30]: domain ontologies have been
situated in the M1 layer and metaontologies have been situated in the M2 layer. The authors also
define an ontology in the software engineering domain as a formal, often taxonomic organization of
concepts. Therefore, an ontology can be used at the highest abstraction level to give foundational
ontologies, metamodels and finally modeling languages at a domain specific level. In other words, the
ontology concept can be applied at various “metalevels” in just the same way that the “model
concept can be”. In Figure 3-5 are presented the positions of metaontologies (upper-level ontologies)
and domain ontologies within the four layered architecture of the OMG [30].

Figure 3-5. Meta ontologies and domain ontologies within the four layered architecture [11]

This work is relevant for this thesis because the proposed location of ontologies in the four layered
architecture is useful for supporting the level of location where our proposed ontology OntoiStar has
been placed.

3.5.2 Model Driven Engineering with Ontology Technologies
In this work [10] the authors proposed the use of ontology technologies for software modeling to
carry over the advantages from ontologies to the software modeling domain. Semantic of modeling
languages often is not defined explicitly in its metamodel. Therefore, the syntactical correctness of
models is often analyzed implicitly using procedural checks of the modeling tools. In this work the
authors presented how ontologies can support the definition of software modeling languages
semantics and provide the definition of syntactic constraints.

3.5 From metamodels to ontologies by means of MDE

29

The authors present different approaches for combining software languages with ontology
technologies based on the four layered architecture of the OMG [30]. One of the approaches is the
transformation language bridge. The general architecture of the transformation language bridge is
depicted in Figure 3-6. As it is shown in the image the bridge is defined at the M3 layer, where a
metametamodel like Ecore is considered and bridged with the OWL metamodel. The bridge contains
the transformation rules or patterns required for the representation of software languages
(metamodel/model) in the OWL language. The bridge is defined as follows:

1. Constructs in the software modelling space and in the ontology space are identified. These
constructs, or language constructs, are used to define the corresponding metamodels in the
modelling layer M2.

2. Based on the identification of the constructs, the relationships between the constructs are
analyzed and specified.

Figure 3-6. Transformation Language Bridge

This work is relevant for this thesis because the transformation from the i* metamodel into the
ontology OntoiStar is carried out based on the transformation language bridge proposed in this effort.

3.5.3 Bridging MDA and OWL ontologies
In this work [36] the authors propose a solution for the problem of transformation between ontology
and MDA-based languages. They analyzed the OWL and MDA-compliant languages as separate
technological spaces where a technological space is defined as a working context with a set of
associated concepts, body of knowledge, tools, required skills, and possibilities. For the MDA
languages the authors defined an Ontology Definition Metamodel (ODM) and an Ontology UML
Profile (OUP) using Meta-Object Facility (MOF) [37]. Both ODM and UML models are serialized in XMI
format which is basically an XML format and OWL can be also represented in XML format. Therefore,
XML technological space is also considered during the conversion between MDA ontology languages
and OWL. The transformation is carried out in the XML technological space.
The authors proposed to use XSLT for the transformations between ODM and UML and also for the
transformations between ODM and OWL. Practically, the transformations are based on the XML
schemas of both OWL and XMI (i.e. the XML Schema of the UML XMI format). In Figure 3-7 is
presented the transformation of an OUP model in the XMI format to its equivalent OWL ontology (an
OWL document in XML format). The transformation maps the MDA M1 layer into its corresponding
OWL layers (O1 and O0).

Chapter 3. State of the art

30

Figure 3-7. Transformation from OUP to OWL

This work is relevant for this thesis because the idea of transformation process through the XML
technological space is useful for the mapping process implemented in our proposed automatic
transformation tool from the iStarML format which is a XML file, to OntoiStar.

3.6 Summary of related works
In this chapter, several related works in research fields close to the research work developed in this
thesis have been presented. A summary of related works is described in Table 3-2. The columns of the
table contain the analysis criteria presented in section 3.2 in which the description of each related
work has been based. The rows of the table contain each related work.

Table 3-2. Summary of related works

Related
work

CRITERIOS DE EVALUACIÓN
Approach Application

domain
Languages Contributions Contributions to this

work
Lucena
et al.
2008
[9]

A metamodel is
proposed for
dealing the
heterogeneity of i*
variants. The
metamodel
contains all the
constructs of i* and
Tropos.

Organizational
modeling.

i* and
Tropos.

A metamodel for i*
variants.
A guideline for
facilitating the
extension of the
metamodel with
constructs of others i*
variants.

The metamodel is
useful to determine
the constructs to
include into the
ontology OntoiStar.
The guideline is useful
for the definition of an
integration method for
obtaining the ontology
of a specific i* variant.

Cares
 et al.
2010
[8]

A metamodel is
proposed for
dealing the
heterogeneity of i*
variants. The
metamodel
contains the
common constructs
of i*, Tropos and
GRL.

Organizational
modeling.

i*, Tropos
and GRL.

A metamodel for i*
variants.

The metamodel is
useful for selecting the
constructs to include
into the ontology
OntoiStar.

Cares
et al.
2011

A specification
language is
proposed for

Organizational
modeling.

i* variants. The iStarML
specification language.

The iStarML
specification language
is used for

3.6 Summary of related works

31

[3] representing i*
variants diagrams in
a XML format as a
solution of the i*
variants
interoperability
problem.

representing the i*
based models in a
computer language. It
corresponds to the
input of the automatic
transformation tool
proposed in this thesis.

Kappel
et al.
2006
[34]

Lifting metamodels
to ontologies for
achieving the
integration of
modeling languages
through ontologies.

Modeling
languages.

Ecore and
OWL.

A process which semi
automatically lifts
metamodels into
ontologies by making
implicit concepts in the
metamodel explicit in
the ontology.

The set of patterns for
making implicit
concepts in a
metamodel explicit in
an ontology are useful
for the development of
the ontology
OntoiStar.

Yun
 2008
[21]

A semantic
annotation process
for facilitating the
interoperability of
process modeling
by means of an
ontology called
General Process
Ontology (GPO).

Business
processes
modeling.

Business
processes
languages
and OWL.

The General Process
Ontology (GPO) which
provides common and
core semantics of
process modeling
constructs. The
procedure for
annotating a business
process language
metamodel using
mapping rules between
the business process
language and the GPO.

The development of
the GPO and definition
of the mapping rules
are useful for the
development of our
proposed ontology
OntoiStar.

H-Sellers
2011
[11]

The relationship
between
metamodels and
ontologies and the
location of
ontologies in the
four layered
architecture of
MDE.

Software
engineering.

- The location of
ontologies in the four
layered architecture of
MDE. The statement
that the ontology
concept can be applied
at various “metalevels”
in just the same way
that the “model
concept can be”.

The location of
ontologies in the four
layered architecture is
useful for supporting
the level of location
where the ontology
OntoiStar has been
placed.

Staab
et al.
2010
[10]

The use of ontology
technologies for
software modeling
to carry over the
advantages from
ontologies to the
software modeling
domain.

Software
modeling and
MDE.

Software
modeling
languages
and OWL.

A transformation
language bridge for
transforming software
languages into OWL
ontologies.

The transformation
language bridge is
useful for carry out the
transformation from
the i* metamodel into
the ontology
OntoiStar.

Gasevic
 et al.
2005
[36]

The transformation
between
ontologies and
MDA based
languages through
technological
spaces.

MDA. Modeling
languages
based on
MDA, XML
and OWL.

A transformation
process between MDA
based languages and
OWL ontologies
through the XML
technological space.

The transformation
process through the
XML technological
space is useful to carry
out the automatic
transformation from i*
models into ontologies.

Part ll The i* variants integration
methodology

Part II

The i* variants integration
methodology

 35

Chapter 4 Development of the ontology “OntoiStar”

Development of the ontology “OntoiStar”

4.1 Introduction
This chapter presents the development of the ontology OntoiStar. This is the first process of the
phase 1 of this thesis: The i* variants integration methodology as shown in Figure 4-1. OntoiStar
represents the core concepts of the i* framework and the relationships between those concepts.
OntoiStar is the output of this process and the input of the second process of the phase, where
OntoiStar is used as the basis for building the ontology of a specific i* variant for later build an
ontology with i* variants integrated called OntoiStar+. The development of OntoiStar is divided in two
sub-processes. The first sub-process corresponds to a comparative analysis of i* metamodels
proposals presented in [8] and [9] that deal with the heterogeneity of i* variants. The elements
included into OntoiStar are selected from the result of the conducted analysis. The analysis is
described in section 4.2. The second sub-process corresponds to the development of OntoiStar by
means of MDE ideas, where a transformation language bridge approach [10] has been applied. The
development process is presented in section 4.3. OntoiStar has been built using the OWL language
[38] due to OWL allows to define axioms in OntoiStar for specifying the semantic of each i* variant
and the definition of syntactic constraints. Therefore it is possible to analyze the syntactic correctness
of i* models. Moreover, OWL supports inference rules which can be applied for avoiding the loss of
information caused by differences in the integrated i* variants. OntoiStar has been built with the tool
Protégé [39] as described in section 4.3.3.

Figure 4-1. Process 1. Development of OntoiStar

Chapter 4. Development of the ontology “OntoiStar”

36

4.2 Comparative analysis of i* metamodels
A comparative analysis of two i* metamodel proposals has been conducted in order to select the
constructs to include into the ontology OntoiStar. The i* metamodels has been developed with the
purpose of dealing the heterogeneity of i* variants. The metamodels are result of previous analysis of
different i* variants. In [9] a unified metamodel for i* is proposed. The authors analyzed two variants:
i* and Tropos. Following a union approach the constructs of the two variants were included in the
metamodel. In [3] a reference metamodel for i* is proposed. The authors analyzed several i* variants
although for the development of the reference metamodel they focus in i*, Tropos and GRL. The
reference metamodel includes the common concepts of the three variants following an intersection
approach, and additionally the metamodel includes concepts that the authors consider worth
including because these concepts may be used in future variants. In both metamodels, a guideline is
provided for obtaining the metamodel of a specific i* variant, starting from the definition of the
differences of the variant with respect to the corresponding metamodel. For obtaining the
metamodel of a specific variant, a set of operations is defined in each proposal where constructs are
added, removed, renamed or modified in some way. Moreover a set of constraints is defined for
establishing which constructions in the metamodel are or are not allowed. The unified metamodel for
i* [9] has been presented in section 3.3.1, while the reference metamodel for i* [3] has been
presented in section 3.3.2. In the following sections the constructs and class hierarchy of each
metamodel are presented and detailed. Moreover, the similarities and differences between the two
metamodels has been defined together with the characteristics of each metamodel adopted for the
development of the ontology OntoiStar.

4.2.1 Constructs and class hierarchy of the unified metamodel for i*
The unified metamodel for i* proposal has been previously presented in section 3.3.1. Here, the
description of the metamodel is detailed. Specifically the constructs and structure of the unified
metamodel for i* are presented. The concepts: node and iStarRelationship are in a high abstraction
level.
Node represents elements of i* models and iStarRelationship represents links between these
elements. Node has an attribute for identifying each node and it is specialized into
intentionalElement and dependableNode. IntentionalElement represents intentions in i*: goal,
softgoal, task, plan and resource. IntentionalElement is divided in dependency and internalElement.
Dependency represents a dependency relationship and it has an attribute type to represent the
intention behind the dependency. InternalElements are present inside the actor’s boundary.
InternalElement is specialized into the following classes: goal, softgoal, task, plan and resource.
InternalElements can be linked to other internal elements (e.g. with decomposition and means-end
relationships). DependableNode participate in dependencies and they may be specialized into actors
or internalElements. An internalElement also can be linked to a dependency (as it is a subclass of
dependableNode). This means that an internalElement can have external dependencies. An actor can
be specialized into role, agent or position.
IStarRelationship is specialized into actorRelationship, dependencyRelationship and
internalElementRelationship. An actorRelationship defines all possible relationships between actors
and their specializations. These relationships can be of several types: coverLink, occupiesLink,
playsLink, isALink and isPartOfLink. An agent occupies a position, a position covers a role and an agent
plays a role. An actor can also be a specialization of another actor using the isALink relationship, as
well as it can be a sub-component of another actor using the isPartOfLink relationship. The
relationship isALink and isPartOfLink are present only in i*. A dependencyRelationship defines a

4.2 Comparative analysis of i* metamodels

 37

relationship between dependableNode and a dependency. It is specialized into dependeeLink and
dependerLink. A dependableNode can be related to a dependency as a depender, through a
dependerLink or as a dependee through a dependeeLink. A dependencyRelationship may have an
attribute representing the strength of the dependency. The dependencyStrength can be: critical,
open, and committed. An internalElementRelationship defines all possible relationships among
internalElements. It is specialized into contribution, decomposition and meansEnd. MeansEnd
represents a means-end link where an internalElement can be the “means” or the “end” of the link.
The decomposition is specialized into andDecomposition and orDecomposition. AndDecomposition
states that all the subelements must be achieved to accomplish the decomposed element. In
orDecomposition, at least one subelement must be achieved to accomplish the decomposed element.
Contribution represents a contribution link. It is applied to goals and softgoals to indicate that an
internalElement contributes in some degrees to its achievement. Contribution has an attribute to
specify the degree of the contribution. The degree of the contribution can be: enough, positive,
negative, notEnough. The contribution types, intentionalElement types and the dependency strength
are defined in three additional classes as enumerations.
In Figure 4-2 is represented the class hierarchy of the concepts included in the metamodel. The
relationships are represented as classes used to interconnect other classes; the class hierarchy of the
relationships is presented in Figure 4-3. The additional classes that are not part of a class hierarchy
and correspond to the enumeration classes are presented in Figure 4-4. The hierarchies presented in
the following figures are obtained based on the metamodel presented in Figure 3-1.

Concepts

Figure 4-2. Unified metamodel - Concepts class hierarchy

Chapter 4. Development of the ontology “OntoiStar”

38

Relationships

Figure 4-3. Unified metamodel - Relationship class hierarchy

Additional Classes

Figure 4-4. Unified metamodel - Additional classes

4.2.2 Constructs and class hierarchy of the reference metamodel for i*
The reference metamodel for i* proposal has been previously presented in section 3.3.2. In this
section, the description of the metamodel is detailed. Specifically the constructs and structure of the
reference metamodel for i* are presented.
The concept node is in a high abstraction level. At the same level of abstraction of node is the concept
externalElement, which represents nonintentional elements. Node has an attribute for identifying
each node and it is specialized into intentionalElement and dependableNode. IntentionalElement
represents intentions in i*: goal, softgoal, task and resource. IntentionalElement has an attribute to
specify the type of intentional element. IntentionalElement is divided in dependum and
internalElement. Dependum represent the reason or agreement why a dependee depends on a
depender. InternalElements are present inside the actor’s boundary. InternalElements can be linked
to other internal elements (e.g. with decomposition and means-end relationships). DependableNode
participate in dependencies and they may be specialized into actors or internalElements. An
internalElement also can be linked to a dependency (as it is a subclass of dependableNode). This
means that an internalElement can have external dependencies. An actor can be specialized into role,
agent or position. Dependency is defined as a ternary relationship comprising depender, dependee
and the dependum. Dependum is a class in the metamodel where depender and dependee are
association between dependency and the dependableNode. Dependency has an attribute type to
represent the intention behind the dependency. Relationship is specialized into two relationships

4.2 Comparative analysis of i* metamodels

 39

between actors: isPartOf and isA. Cover, occupies, plays are represented as association between
actors. An agent occupies a position, a position covers a role and an agent plays a role. Link defines all
possible relationships among internalElements. It is specialized into contribution, decomposition and
meansEnd. MeansEnd represents a means-end link where an internalElement can be the “means” or
the “end” of the link. The decomposition states that one or all the subelements must be achieved to
accomplish the decomposed element. Contribution represents a contribution link. It is applied to
goals and softgoals to indicate that an internalElement contributes in some degrees to its
achievement. Contribution has an attribute to specify the degree of the contribution. The degree of
the contribution can be: + and -. The contribution types and the intentionalElement types are defined
in two additional classes as enumerations.
In Figure 4-5 is represented the class hierarchy of the concepts included in the metamodel. The
relationships are represented as classes used to interconnect other classes; the class hierarchy of the
relationships is presented in Figure 4-6. The additional classes that are not part of a class hierarchy
and correspond to the enumeration classes are presented in Figure 4-7. The hierarchies presented in
the following figures are obtained based on the metamodel presented in Figure 3-2.

Concepts

Figure 4-5. Reference metamodel - Concepts class hierarchy

Relationships

Figure 4-6. Reference metamodel - Relationship class hierarchy

Chapter 4. Development of the ontology “OntoiStar”

40

Additional classes

Figure 4-7. Reference metamodel - Additional classes

4.2.3 Comparison of the metamodels
The metamodels presented in the previous sections are very similar, although, the differences are
significant. The objective of both approaches is to provide a metamodel for dealing the heterogeneity
of i* variants. However, for the development of the unified metamodel for i* [9] a union approach
has been applied including in the metamodel the concepts of two variants: i* and Tropos. In the other
hand, for the development of the reference metamodel for i* [3] a nonstrict intersection approach
was applied. The reference metamodel includes the common concepts of three variants: i*, Tropos
and GRL. In the next tables the similarities and differences are presented. In Table 4-1 are presented
the common constructs in both metamodels, specifying the existing differences of the constructs in
each metamodel.

Table 4-1. Common constructs in the metamodels

Common constructs Differences
Node Node has the attribute “name: String” in [9].

Node has the attribute “label: String” in [3].
Dependable Node No difference
Actor No difference
Role No difference
Agent No difference
Position No difference
IsPartOf No difference
IsA No difference
Occupies It is represented as class in [9].

It is represented as association in [3].
Covers It is represented as class in [9].

It is represented as association in [3].
Plays It is represented as class in [9].

It is represented as association in [3].
Boundary It is represented as association in [9] and [3].
Dependency It is a subclass of IntentionalElement and it is defined as a binary

relationship (depender, dependee) in [9].
It is an independent class (without hierarchy) and it is defined as a ternary
relationship (depender, dependee, dependum) in [3].

Dependee It is represented as class in [9].
It is represented as association in [3].

Dependee It is represented as class in [9].

4.2 Comparative analysis of i* metamodels

 41

It is represented as association in [3].
IntentionalElement It is specialized in Dependency and InternalElement in [9].

It is specialized in Dependum and InternalElement in [3].
InternalElement InternalElement has the attribute “type: IntentionalType” in [3].
Goal No difference
Task No difference
Resource No difference
Softgoal No difference
Means-end No difference
Contribution No difference
Decomposition It is specialized in “and” and “or” decomposition in [9].
IntentionalType No difference
ContributionType Types: Enough, Positive, Negative, Not enough in [9].

Types: “+” and “–” in [3].

In Table 4-2 are presented the particular constructs of each metamodel and their relation with
respect to other constructs in the metamodel.

Table 4-2. Particular constructs in the metamodels

Particular constructs
in [9]

Particular constructs
in [3]

Differences

InternalElementRelationship Link Equivalent constructs that represent a high
abstraction level of internal element relationships
presented in [9] y [3]. In [9]
internalElementRelationship is a subclass of
iStarRelationship.

ActorRelationship - It is a high abstraction level that represents actor
relationships and it is a subclass of
iStarRelationship. It is specialized in isPartOf, isA,
occupies, covers and plays in [9].
Similar to relationship class in [3].

- Relationship Similar to actorRelationship class in [9].
It is a high abstraction level that represents actor
relationships. It is specialized only in isPartOf and
isA (occupies, covers and plays are represented
as associations) in [3].

- Dependum It does not appear in [9].
It is a subclass of intentionalElement which
represents the dependum in a dependency in [3].

- External Element It does not appear in [9].
It is an additional class which represents
nonintentional elements modeled in other
languages in [3].

Plan - It is a subclass of InternalElement in [9].

Chapter 4. Development of the ontology “OntoiStar”

42

It does not appear in [3].
AndDecomposition - It is a subclass of decomposition which

represents “and decomposition” in [9].
It does not appear in [3].

OrDecomposition - It is a subclass of decomposition which
represents “or decomposition” in [9].
It does not appear in [3].

DependencyRelationship - It is a high abstraction level of dependency
relationships in [9].
It does not appear in [3].

IStarRelationship - It is a high abstraction level of concepts
relationships in [9].
It does not appear in [3].

DependencyStrength - It is an enumeration which represents the
strength of a dependency in [9].
It does not appear in [3].

4.2.4 Differences of the metamodels
The differences presented in Table 4-1 and Table 4-2 between the two metamodel proposals, are
grouped in three categories: concepts not common in both metamodels, representation of
relationships between concepts and class hierarchy.

4.2.4.1 Concepts not common or with differences in both metamodels
The concepts not common in both metamodel are listed below:
Concepts present in [9]:

 Plan: Plan is a subclass of internalElement. It is equivalent to task.
 DependencyStrength: DependencyStrength is an enumeration which represents the strength

of a dependency.

Concepts present in [17]:

 Dependum: Dependum is a subclass of intentionalElement. It represents the third concept
related with a dependency relationship, which are: depender, dependee, and dependum. It is
associated with dependency class.

 ExternalElement: ExternalElement is an independent class which represents nonintentional
elements.

Concepts with differences in [9] and [17]:

 The concept node is a class presented in both metamodels. However, the attribute of the
class is different. In [9] the attribute is name, of type string, and in [17] the attribute is label of
type String.

 The concept intentionalElement is a class presented in both metamodels. However, in [17]
the class has the attribute type, whose value is assigned in terms of the enumeration class
intentionalType.

4.2 Comparative analysis of i* metamodels

 43

 The concept contributionType is an enumeration presented in both metamodels. However,
the list of types that it contains is different. In [9] the contributions types are: enough,
positive, negative, not enough. Whereas in [17] the contributions types are: “+” and “–“.

4.2.4.2 Representation of concepts relationships
The type of relationships presented in the i* variants are: actor relationship, intentional element
relationship and dependency relationship.
The differences with respect to the representation of the relationships are presented in actor
relationships and dependency relationship.

 Actor relationships: In [9] and [17] the relationships “is a”, “is part of”, are represented as
classes. The classes “is a” and “is part of” have associations with the actor class.
In [9] “occupies”, “covers”, and “plays” are also classes which have associations with the
classes defined for the type of actors: agent, position, and role. Whereas in [17] “occupies”,
“covers”, and “plays” are associations between the classes defined for the type of actors:
agent, position, and role.

 Internal element relationships: In [9] and [17] the relationships “decomposition”
“contribution” and “meansEnd” are represented as classes. In [9] each class has their
corresponding two associations. “Decomposition”, “contribution” and “meansEnd” classes
has associations with the internalElement class. In [17] associations are between
internalElement class and link class, where link class is the super class of “decomposition”,
“contribution” and “meansEnd” classes. “Decomposition” is specialized in
“andDecomposition” and “orDecomposition”.

 Dependency relationships: In [9] depender and dependee are represented as classes. The
class depender and the class dependee have an association with the dependency class and an
association with dependumNode class. In [17] depender and dependee are represented as
associations between dependency class and dependumNode class.

4.2.4.3 Class hierarchy
It is clear that due the concepts not common and the relationships representation in each
metamodel, their class hierarchy is different. Further, some classes are defined in a high abstraction
level and some classes are defined in different levels of hierarchy.

4.2.4.3.1 High abstraction level classes
The high abstraction level classes presented in each metamodel are listed below:

Classes present in [9]:

 IStarRelationship: iStarRelationship is a high abstraction level class which represents all the
concepts relationships. It is specialized in actorRelationship, internalElementRelationship and
dependencyRelationship.

 ActorRelationship: actorRelationship represents actor relationships. It is a subclass of the high
abstraction level class: iStarRelationship.

 InternalElementRelationship: internalElementRelationship represents internal elements
relationships. It is a subclass of the high abstraction level class: iStarRelationship.

 DependencyRelationship: dependencyRelationship represents dependency relationships. It is
a subclass of the high abstraction level class: iStarRelationship.

Chapter 4. Development of the ontology “OntoiStar”

44

Classes present in [17]:
 Relationship: relationship represents actor relationships. It is an independent class.
 Link: Link represents internal elements relationships. It is an independent class.

ActorRelationship presented in [9] and relationship presented in [17] are equivalents as well as
internalElementRelationship presented in [9] and link presented in [17] are also equivalents.
However, their subclasses and associations are different.

4.2.4.3.2 Differences in the levels of the hierarchy
 Dependency: In [9] it is a subclass of intentionalElement. In [17] it is an independent class.
 Dependum: In [9] dependum class does not appear. In [17] it is a subclass of

intentionalElement.
These differences are derived from the specialization of the intentionalElement class, which is
specialized in dependency and internalElement in [9] and dependum and internalElement in [17].

4.2.4.4 Class properties
In [9] the authors do not specify class properties. The types of class properties presented in [17] are:
Disjoint: An occurrence of the super-class may not be a member of more than one sub-class.
Complete: Each occurrence of the super-class must be a member of one of the sub-classes.
Incomplete: Some occurrences of the super-class might not be members of any sub-class.
The class properties presented in [17] are described in Table 4-3.

Table 4-3. Reference metamodel - Class properties

Property Source class Target class
{disjoint, complete} Is_part_of, is_a Relationship

{disjoint, incomplete} Agent, position, role. Actor
{disjoint, complete} DependableNode,

intentionalElement,
dependency.

Node

{disjoint, complete} Actor, InternalElement. DependableNode
{disjoint, complete} Dependum, InternalElement. IntentionalElement
{disjoint, complete} Decomposition, contribution,

meansEnd.
Link

4.2.5 Constructs and characteristics to include into the ontology OntoiStar
The analysis of the metamodels previously presented has been carried out for selecting the
constructs and characteristics to include into the ontology OntoiStar. The analysis has been focused
specifically in the constructs and structure of the metamodels leaving aside the operations and
constraints defined in each proposal for obtaining the metamodel of a specific variant. The common
characteristics of both metamodels have been adopted including concepts, relations, and attributes,
but also some characteristics specifics of each one. In general, the idea of the intersection approach
presented in [17] has been followed and a combination of the structure of the metamodel presented
in both proposals. The specific characteristics adopted of each metamodel are presented in the
following sub-sections according to the three categories of differences presented in section 4.2.4.

4.2 Comparative analysis of i* metamodels

 45

4.2.5.1 Concepts not common or with differences in both metamodels
With respect to the concepts not common or with differences in both metamodels, the elements to
include into OntoiStar are:

 The class called dependum to represent the concept dependum included only in [17], which
correspond to the reason why a dependee depends on a depender.

 The attribute label from the node class in [17] and the attribute type from the class
intentionalElement. The attribute type presented in dependency class and contribution class
in both metamodels are also adopted.

 For the intentionalType enumeration the adopted types are: goal, softgoal, task and resource.
 For the contributionType enumeration the adopted types are: “+” and “–” as in [17].

The concept plan and the relationship orDecomposition presented only in [9] were not included
because they are concepts of a specific variant as well as dependencyStrength is an enumeration that
appear only in one variant. ExternalElement represents nonintentional elements modeled in other
languages, useful to complement an agent-oriented specification; this concept was not included into
OntoiStar.

4.2.5.2 Representation of concepts relationships
The representation of concepts relationships to include into OntoiStar has been defined in terms of
classes and associations.

 Actor relationships: “is a”, “is part of” are represented as classes as in [9]: isALink and
IsPartOfLink respectively. “Occupies”, “covers”, and “plays” are also represented as classes as
in [9] and [17]: occupiesLink, coversLink and playsLink respectively.
Associations: Each class has their corresponding two associations. The class isALink and the
class isPartOfLink have associations with the actor class. The class occupiesLink, the class
coversLink and the class playsLink have associations with the classes defined for the type of
actors: agent, position and role.
The relationship “boundary” is represented as the actorBoundary class. An association is
defined between actor and actorBoundary classes and another association is defined
between actorBoundary and internalElement classes.

 Dependency relationships: depender and dependee presented in [9] and [17] and dependum
association presented only in [17] are represented as classes: dependerLink, dependeeLink
and dependumLink respectively.
Associations: Each class has their corresponding two associations. DependerLink and
dependeeLink have associations with dependency class and dependableNode class. While
dependumLink has associations with dependency class and dependum class.

 InternalElement relationships: “decomposition” “contribution” and “meansEnd” are
represented as classes as in [9] and [17]. The andDecomposition relationship presented only
in [9] is also represented as a class. It is a subclass of Decomposition class as in [9].
Associations: The associations as in [9] are between internalElement class and
“decomposition”, “contribution” and “meansEnd” classes respectively.

Chapter 4. Development of the ontology “OntoiStar”

46

4.2.5.3 Class hierarchy
In general, the class hierarchy of the metamodel presented in [9] has been adopted, but few
modifications were applied. The high abstraction level class iStarRelationship presented in [9] has
been included for representing all the concept relationships: actor relationship, internal element
relationship and dependency relationship. For that reason, iStarRelationship is specialized as in [9] in
the classes: actorRelationship, internalElementRelationship and dependencyRelationship.
ActorRelationship, internalElementRelationship and dependencyRelationship specialization was
introduced in section 4.2.1. In [9] the intentionalElement class is specialized in dependency and
internalElement and in [17] it is specialized in dependum and internalElement. Dependum class is not
present in [9], but it has been selected to include into the ontology OntoiStar. Therefore the
specialization of [17] has been adopted and the dependency class has been located as part of the
specialization of node class.
It is worth mentioning that although goal, softgoal, task and resource are common concepts in [9] and
[17]; these concepts are not displayed or listed as classes in [17]. In any form, they are represented as
classes as in [9].
In the figures below are presented all the constructs to include into the ontology OntoiStar. In Figure
4-8 is represented the class hierarchy of the concepts, in Figure 4-9 the class hierarchy of the
relationships and in Figure 4-10 are presented the additional classes that are not part of a class
hierarchy.

Concepts

Figure 4-8. OntoiStar - Concepts class hierarchy

4.2 Comparative analysis of i* metamodels

 47

Relationships

Figure 4-9. OntoiStar- Relationship class hierarchy

Additional Classes

Figure 4-10. OntoiStar - Additional classes

4.2.5.4 Class properties
The class properties to include into OntoiStar have been adopted from [17]. Due the differences in
the concepts and relationships presented in [17] and the concepts and relationships selected for
OntoiStar described in the previous sections, some class properties have to be extended and others
class properties added.
The types of class properties to use are:
Disjoint: An occurrence of the super-class may not be a member of more than one sub-class.
Complete: Each occurrence of the super-class must be a member of one of the sub-classes.
Incomplete: Some occurrences of the super-class might not be members of any sub-class.

In Table 4-3 are described the class properties to include into OntoiStar.

Table 4-4. OntoiStar - Class properties

Property Source class Target class
{disjoint, complete} CoversLink, isALink,

isPartOfLink, occupiesLink,
playsLink.

ActorRelationship

{disjoint, incomplete} Agent, role, position. Actor
{disjoint, complete} DependableNode, dependency,

intentionalElement.
Node

{disjoint, complete} Actor, internalElement. DependableNode
{disjoint, complete} InternalElement, dependum. IntentionalElement
{disjoint, complete} Contribution, decomposition, InternalElementRelationship

Chapter 4. Development of the ontology “OntoiStar”

48

meansEnd. (Link in [17]).

Additional class properties
{disjoint, complete} Goal, softgoal, task, resource. InternalElement
{disjoint, complete} ActorRelationship,

internalElementRelationship,
dependencyRelationship.

iStarRelationship

{disjoint, complete} DependerLink, dependeeLink,
dependumLink.

DependencyRelationship

4.3 A transformation approach for the development of OntoiStar
For the development of OntoiStar the transformation language bridge approach [10] presented in
section 3.5 has been applied. This approach is based on MDE ideas, where models, metamodels and
metametamodels are part of a layered architecture and they are located in the M1, M2 and M3
layers, respectively. The transformation language bridge approach describes a (physical)
transformation between metamodels in layer M2. OntoiStar has been built using the OWL language
[38]. As OWL is the standard semantic web language, the organizational knowledge contained in the
ontology corresponding to an i* model can be shared to be understandable not only for humans but
also for software systems to automatically discover the meaning of business resources defined in the
models. Moreover, OWL supports inference rules which can be applied for avoiding the loss of
information caused by differences in i* variants. In Figure 4-11 is presented the OntoiStar
development architecture. On the left side is situated the i* modeling language architecture, where
the i* metamodel is located in the M2 layer, and it is described by its metametamodel (represented in
the Unified Modeling Language) in the M3 layer, and on the right side is situated, our proposed
ontology architecture, where the resultant OntoiStar has been located in the M2 layer and it is
described by the OWL metamodel. The transformation bridge then is defined in the M3 layer. It
contains the mapping rules between concepts from the i* metametamodel, such classes and
associations and concepts from the OWL metamodel, such classes and properties. The transformation
bridge is applied in the layer M2, transforming the i* metamodel into the ontology OntoiStar. For
transforming an i* based model to instances of OntoiStar (in the layer M1), an automatic
transformation tool has been developed and it is described in Chapter 6.
Applying this approach a logical knowledge base is generated, where the terminological part (TBox) is
provided by the ontology OntoiStar and the assertional part (ABox) corresponds to a specific
organization description represented in an i* model, which is mapped as instances of OntoiStar.

4.3 A transformation approach for the development of OntoiStar

 49

Figure 4-11. OntoiStar development architecture

The transformation bridge is defined as follows:

i. Identifying constructs from the i* metamodel and from the OWL language.
The first step for the transformation of the i* metamodel into the ontology OntoiStar is to
define the constructs of both modeling languages.
- The constructs of the i* metamodel to include into OntoiStar have been defined in

section 4.2.5 as a result of the comparative analysis of i* metamodels previously
described.

- The main constructs of the OWL language are: Class, Object property and Data property
and the axioms: ObjectPropertyDomain, ObjectPropertyRange and DataPropertyDomain.

ii. Defining the relationships between constructs from the i* metamodel and the OWL language.

After having identified the constructs of the modeling languages, the next step corresponds
to the definition of the relationship between each construct of the i* metamodel with
constructs from the OWL language. For defining this relationships a set of transformation
rules have been proposed. The transformation rules are presented in the following section.

4.3.1 Transformation rules
According to the type of constructs of each language the subsequent transformation rules has been
defined.

1. Each concept, concept relationship and enumeration class included in the i* metamodel
is represented as a class in OWL.

2. Each association included in the i* metamodel is represented as an object property in
OWL. Where its domain corresponds to the association source and its range corresponds
to the association target.

3. Each class property included in the i* metamodel is represented with axioms in OWL.
4. Each enumeration element included in the i* metamodel is represented as a class

instance of the owner enumeration class in OWL.
5. Attributes. There are two types of attributes:

Chapter 4. Development of the ontology “OntoiStar”

50

a) Each enumeration type attribute included in the i* metamodel is represented as an
object property in OWL. Where its domain corresponds to the owner class and its
range corresponds to the enumeration class.

b) Each primitive data type attribute included in the i* metamodel is represented as a
data property in OWL. Where its domain corresponds to the owner class and its range
corresponds to the primitive data type.

These transformations rules are applied during the transformation for the i* modeling language to
the OWL language getting as result the ontology OntoiStar.

4.3.2 Applying transformation rules: from i* to OWL
Applying the transformation rules to the constructs of the metamodel the concepts of the ontology
OntoiStar are generated. The concepts of the ontology are presented in the tables below.

Rule 1. Concepts, concept relationships and enumerations represented as classes.
Each concept, concept relationship and enumeration class included in the i* metamodel is
represented as a class in OWL. The Table 4-5 shows on the left side the classes defined in the
metamodel of i* and in the right side the corresponding classes defined in the ontology OntoiStar.

Table 4-5. Classes in the i* metamodel as classes in OntoiStar.

Classes in the metamodel Classes in OntoiStar
Concepts

Node Node
DependableNode DependableNode
Actor Actor
Role Role
Position Position
Agent Agent
IntentionalElement IntentionalElement
Dependum Dependum
InternalElement InternalElement
Goal Goal
Softgoal Softgoal
Resource Resource
Task Task
Dependency Dependency

Relationships
IStarRelationship IStarRelationship
ActorRelationship ActorRelationship
ActorBoundary ActorBoundary
IsPartOf IsPartOfLink
IsA IsALink
Cover CoversLink
Occupies OccupiesLink

4.3 A transformation approach for the development of OntoiStar

 51

Plays PlaysLink
DependencyRelationship DependencyRelationship
Depender DependerLink
Dependee DependeeLink
Dependum DependumLink
InternalElementRelationship InternalElementRelationship
MeansEnd MeansEndLink
Decomposition DecompositionLink
AndDecomposition AndDecompositionLink
Contribution ContributionLink

Enumerations
<<Enumeration>>
IntentionalType

<<Enumeration>>
IntentionalType

<<Enumeration>>
ContributionType

<<Enumeration>>
ContributionType

Rule 2. Associations represented as object properties
The associations in the i* metamodel represents relationships between concepts. Each association
included in the i* metamodel is represented as an Objectproperty in OWL. Where its domain
corresponds to the association source and its range corresponds to the association target.
The Table 4-6 presents on the left side the source class, target class and the name of the relationships
defined in the metamodel of i* and on the right side the corresponding object properties with the
domain and range defined in the ontology OntoiStar.

Chapter 4. Development of the ontology “OntoiStar”

 52

Table 4-6. Relationships in the i* metamodel as object properties in OntoiStar.

In the metamodel In OntoiStar
Source class Target class Object Property Domain Range

ActorRelationships
IsPartOf Actor has_Actor_IsPartOfLink_source_ref IsPartOfLink Actor
IsPartOf Actor has_Actor_IsPartOfLink_target_ref IsPartOfLink Actor
IsA Actor has_Actor_IsALink_source_ref IsALink Actor
IsA Actor has_Actor_IsALink_ target_ref IsALink Actor
Cover Role has_Actor_CoverLink_source_ref CoverLink Position
Cover Position has_Actor_CoverLink_target_ref CoverLink Role
Occupies Position has_Actor_OccupiesLink_source_ref OccupiesLink Agent
Occupies Agent has_Actor_OccupiesLink_target_ref OccupiesLink Position
Plays Role has_Actor_PlaysLink_source_ref PlaysLink Agent
Plays Agent has_Actor_PlaysLink_target_ref PlaysLink Role

ActorBoundary
Actor ActorBoundary Has_Actor_Boundary Actor ActorBoundary
ActorBoundary InternalElement has_Actor_boundary_elements ActorBoundary InternalElement

Actor
DependencyRelationships

Depender Dependency has_Dependency_DependerLink_source_ref DependerLink Dependency
Depender DependableNode has_Dependency_DependerLink_target_ref DependerLink DependableNode
Dependee Dependency has_Dependency_DependeeLink_source_ref DependeeLink Dependency
Dependee DependableNode has_Dependency_DependeeLink_target_ref DependeeLink DependableNode
Dependum Dependency has_Dependency_DependumLink_source_ref DependumLink Dependency
Dependum Dependum has_Dependency_DependumLink_target_ref DependumLink Dependum
 InternalElementRelationships
MeansEnd InternalElement has_InternalElement_MeansEndLink_source_ref MeansEndLink InternalElement
MeansEnd InternalElement has_InternalElement_MeansEndLink_target_ref MeansEndLink InternalElement
AndDecomposition InternalElement has_InternalElement_AndDecompositionLink_source_ref DecompositionLink InternalElement
AndDecomposition InternalElement has_InternalElement_AndDecompositionLink_target_ref DecompositionLink InternalElement
Contribution InternalElement has_InternalElement_ContributionLink_source_ref ContributionLink InternalElement
Contribution InternalElement has_InternalElement_ContributionLink_target_ref ContributionLink InternalElement

Rule 3. Class properties represented as axioms
A class property presented in the metamodel is mapped to a class property in OWL.
The types of class properties presented in the metamodel are:
Disjoint: An occurrence of the super-class may not be a member of more than one sub-class.
Complete: Each occurrence of the super-class must be a member of one of the sub-classes.
Incomplete: Some occurrences of the super-class might not be members of any sub-class.

The Disjoint property in the metamodel is represented with the disjointWith axiom in OWL.
The Complete property in the metamodel is represented with the UnionOf axiom in OWL.

The Table 4-6 presents on the left side the properties in the metamodel and on the right side the
corresponding axiom in the ontology OntoiStar.

4.3 A transformation approach for the development of OntoiStar

53

Table 4-7. Class properties in the i* metamodel as axioms in OntoiStar

In the metamodel In OntoiStar
{disjoint, complete} UnionOf and disjointWith
Source class: CoversLink, IsALink,
IsPartOfLink, OccupiesLink, PlaysLink.
Target class: ActorRelationship.

ActorRelationship = UnionOf{CoverLink, IsALink,
IsPartOfLink, OccupiesLink, PlaysLink}
CoversLink disjointWith IsALink
CoversLink disjointWith PlaysLink
CoversLink disjointWith IsPartOfLink
CoversLink disjointWith OccupiesLink
IsALink disjointWith PlaysLink
IsALink disjointWith IsPartOfLink
IsALink disjointWith OccupiesLink
IsPartOfLink disjointWith PlaysLink
IsPartOfLink disjointWith OccupiesLink
OccupiesLink disjointWith PlaysLink

Source class: DependableNode,
Dependency, IntentionalElement.
Target class: Node.

Node = UnionOf{DependableNode, Dependency,
IntentionalElement}
DependableNode disjointWith Dependency
Dependency disjointWith IntentionalElement

Source class: Actor, InternalElement.
Target class: DependableNode.

DependableNode = UnionOf{Actor, InternalElement}
Actor disjointWith InternalElement

Source class: InternalElement,
Dependum.
Target class: IntentionalElement.

IntentionalElement = UnionOf{InternalElement,
Dependum}
InternalElement disjointWith Dependum

Source class: ContributionLink,
DecompositionLink, MeansEndLink.
Target class:
 InternalElementRelationship.

InternalElementRelationship = UnionOf{ ContributionLink,
DecompositionLink, MeansEndLink}
ContributionLink disjointWith DecompositionLink
ContributionLink disjointWith MeansEndLink
DecompositionLink disjointWith MeansEndLink

Source class: Goal, Softgoal, Task,
Resource.
Target class: InternalElement

InternalElement = UnionOf{Goal, Softgoal, Task, Resource}
Goal disjointWith Softgoal
Goal disjointWith Task
Goal disjointWith Resource
Softgoal disjointWith Task
Softgoal disjointWith Resource
Task disjointWith Resource

Source class: ActorRelationship,
InternalElementRelationship,
DependencyRelationship.
Target class: iStarRelationship

iStarRelationship = UnionOf{ActorRelationship,
InternalElementRelationship, DependencyRelationship}
ActorRelationship disjointWith
InternalElementRelationship
ActorRelationship disjointWith DependencyRelationship
InternalElementRelationship disjointWith
DependencyRelationship

Source class: DependerLink, DependencyRelationship = UnionOf{DependerLink,

Chapter 4. Development of the ontology “OntoiStar”

54

DependeeLink, DependumLink.
Target class:
DependencyRelationship.

DependeeLink, DependumLink}
DependerLink disjointWith DependeeLink
DependerLink disjointWith DependumLink
DependeeLink disjointWith DependumLink

{disjoint, incomplete}
Source class: Agent, Role and
Position.
Target class: Actor

Agent disjointWith Position
Agent disjointWith Role
Role disjointWith Position

Rule 4. Enumerations elements as class instances
Each enumeration element included in the i* metamodel is represented as a class instance of the
owner enumeration class in OWL. The Table 4-8 presents the classes together with their class
instances.

Table 4-8. Enumeration elements in the i* metamodel as class instances in OntoiStar

Class Class instance
IntentionalType Goal

Softgoal
Task
Resource

ContributionType +
–

Rule 5. Attributes represented as data properties

a) Each enumeration type attribute included in the i* metamodel is represented as an object
property in OWL. Where its domain corresponds to the owner class and its range corresponds
to the enumeration class.

The IntentionalElement class has the attribute: “type” of type IntentionalType.
The Dependency class has the attribute: “type” of type IntentionalType.
The Contribution class has the attribute: “type” of type ContributionType.

The Table 4-9 presents on the left side the enumeration types attributes in the metamodel and on the
right side the corresponding object properties in the ontology OntoiStar.

Table 4-9. Enumeration type attributes as object properties in OntoiStar

In the metamodel In OntoiStar
Class Attribute Object Property Domain Range

IntentionalElement Type Has_IntentionalElement_IntentionalType IntentionalElement IntentionalType
Dependency Type Has_Dependency_IntentionalType Dependency IntentionalType
Contribution Type Has_ContributionLink_ContributionType ContributionLink ContributionType

4.3 A transformation approach for the development of OntoiStar

55

b) Each primitive data type attribute included in the i* metamodel is represented as a data
property in OWL. Where its domain corresponds to the owner class and its range corresponds
to the primitive data type.
The Node class has the attribute: “label” of type string.

The Table 4-10 presents on the left side the data type attributes in the metamodel and on the right
side the corresponding data properties in the ontology OntoiStar.

Table 4-10. Data type attributes as data properties in OntoiStar

Dataproperty Domain Range
Node_label Node String

4.3.3 Additional elements included into OntoiStar
Some additional elements have been included in the ontology OntoiStar as described below.

Classes
Two classes have been included into OntoiStar: Diagram and Thing. The class Diagram represents an
i* based model. Two or more i* based models can be represented in the same ontology. The class
Thing represents the highest ranking class in an ontology. Any class that is part of an ontology must
be sub-class of the class Thing. In Table 4-12 are listed the additional classes.

Table 4-11. Additional classes included into OntoiStar

Classes
Diagram
Thing

Data properties
Data properties have been included into OntoiStar as attributes of classes. In Table 4-12 are listed the
data properties and their corresponding classes.

Table 4-12. Additional data properties included into OntoiStar

Dataproperty Domain Range
Diagram_id Diagram String
Diagram_name Diagram String
Diagram_author Diagram String
Boundary_type ActorBoundary String
Dependency_value Dependency String
IntentionalElement_state IntentionalElement String
iStarRelationship_id iStarRelationship String
iStarRelationship_name iStarRelationship String

Chapter 4. Development of the ontology “OntoiStar”

56

Object properties
An object property has been included into OntoiStar to indicate the elements of an i* based model
which belong to a instance of the class Diagram. In Table 4-13 is presented the object property and its
corresponding domain and range.

Table 4-13. Additional object properties included into OntoiStar

In OntoiStar
Class Object Property Domain Range
Diagram has_Diagram_elements Diagram Node

4.4 OntoiStar with Protégé
Protégé [39] is a free, open source ontology editor which allows generation, visualization and
manipulation of ontologies. The steps followed for the development of OntoiStar in protégé are:

1. Creation of classes and the class hierarchy.
2. Definition of the class properties.
3. Creation of data properties.
4. Creation of object properties.
5. Create instances of classes.

4.4.1 OntoiStar taxonomy
The resultant OntoiStar taxonomy is presented in Figure 4-12.

4.4 OntoiStar with Protégé

57

Figure 4-12. OntoiStar taxonomy

4.4.2 OntoiStar metrics
In Table 4-14 are described the OntoiStar metrics. The classes, data properties, object properties,
individuals and axioms corresponds to those presented in section 4.3.2 where the transformation
rules were applied for generating the ontology OntoiStar.

Table 4-14. OntoiStar metrics

Metrics
Class count 35 Listed in Table 4-5 and Table 4-11.
Object property count 28 Listed in Table 4-6, Table 4-9 and Table 4-13.
Data property count 9 Listed in Table 4-10 and Table 4-12.
Individual count 6 Listed in Table 4-8.
DL expressivity ALCN(D)

Chapter 4. Development of the ontology “OntoiStar”

58

Class axioms
Union classes axioms count 8 Listed in table

The Table 4-6 presents on the left side the
properties in the metamodel and on the
right side the corresponding axiom in the
ontology OntoiStar.

Table 4-7.

Disjoint classes axioms count 32 Listed in table
The Table 4-6 presents on the left side the
properties in the metamodel and on the
right side the corresponding axiom in the
ontology OntoiStar.

Table 4-7.

Object properties axioms
Functional object property
axioms count

 Listed in Table 4-6, Table 4-9 and Table 4-13.
(column Cardinality)

Object property domain
axioms count

28 Listed in Table 4-6, Table 4-9 and Table 4-13.
(column Domain)

Object property range axioms
count

28 Listed in Table 4-6, Table 4-9 and Table 4-13.
(column Range)

Data properties axioms
Data property domain axioms
count

9 Listed in Table 4-10 and Table 4-12.
(column Domain)

Data property range axioms
count

9 Listed in Table 4-10 and Table 4-12.
(column Range)

Individual axioms
Class assertion axioms count 6

4.5 Summary

In this chapter the development of the ontology OntoiStar has been presented. The purpose of the
process described in this chapter is the development of the ontology OntoiStar. A comparative
analysis of two i* metamodels proposals that deal with the heterogeneity of i* variants has been
carried out in order to determine the elements to include into the ontology OntoiStar. Moreover, as
result of the analysis was determined the class hierarchy and the class properties to include into the
ontology. A transformation language bridge approach based on MDE has been applied for developing
OntoiStar. Where a transformation bridge is defined for transforming the i* metamodel into
OntoiStar. A set of rules has been proposed for the transformation bridge. The transformation rules
have been applied and the elements of OntoiStar were defined and subsequently implemented in
protégé. OntoiStar is the basis ontology for obtaining the ontology of a specific i* variant. Therefore is
the input of the next process of the i* integration methodology.

 59

Chapter 5 Development of OntoiStar+: the ontology with i*
variants integrated

Development of OntoiStar+: the ontology with i* variants integrated

5.1 Introduction
This chapter presents the development of the ontology OntoiStar+. The ontology OntoiStar+
corresponds to an ontology with i* variants integrated. Therefore in this chapter the steps for
integrating i* variants are described. The name “OntoiStar+” used to call to the ontology, is a general
term that indicates that the ontology contains the constructs of two or more i* variants no matter
which or how many are the variants. The development of the ontology OntoiStar corresponds to the
second process of the phase 1 of this thesis: The i* variants integration methodology as shown in
Figure 5-1. The process 2 presented in this chapter receives as input the ontology OntoiStar which
represents the core concepts of the i* framework and the relationships between those concepts.
OntoiStar has been developed in the process 1 as it is described in Chapter 4. The development of
OntoiStar+ is divided in two sub-processes. The sub-process 1, presented in section 5.2, corresponds
to the generation of the specific ontology of an i* variant. The specific ontology of an i* variant is
obtained based on OntoiStar. In this sub-process a guidance to integrate into OntoiStar the additional
elements of a specific i* variant is presented. The sub-process 2, presented in section 5.3, describes
how to obtain the ontology OntoiStar+ by merging the i* variant ontologies obtained after following
the sub-process 1 as many times as variants want to be integrated (one time for each i* variant).
After following the sub-process 2, the resultant ontology OntoiStar+ contains the elements of the
merged i* variant ontologies. The ontology merging process has been automated and integrated to
the tool presented in Chapter 6 as described in section 6.5.4. The output of the process 2, described
in this chapter, corresponds to the ontology OntoiStar+. As a first application of the methodology
presented in this thesis, the integration of the three variants: i*, Tropos and Service-oriented i* have
been carried out. The process of application of the methodology is described in section 5.4. The
resultant ontology OntoiStar+ contains the constructs of the three i* variants and it has been
renamed as “i*&Tropos&Service-orientedi*”. i*&Tropos&Service-orientedi* is the input of the
process 2 of the phase 2: The transformation from i* based model into OntoiStar+, where the
ontology is used for the automatic mapping process of i* based models into ontologies.

Chapter 5. Development of OntoiStar+: the ontology with i* variants integrated

60

Figure 5-1. Process 2. Development of OntoiStar+

5.2 An ontology based on OntoiStar for a specific i* variant
A method for the generation of the specific ontology of an i* variant is presented in this section. The
specific ontology of an i* variant is obtained based on OntoiStar. The method consist of a guidance to
integrate into OntoiStar the additional elements of a specific i* variant.
The method comprises a set of steps related with the tasks of identify, categorize, transform and
classify the additional constructs of an i* variant into the ontology OntoiStar. The proposed set of
steps is:

1. Identify the additional constructs of the i* variant which are not part of the ontology
OntoiStar.

2. Categorize the additional constructs of the i* variant according to proposed types of
constructs: concept, relationship, attribute, attribute value.

3. Transform the additional constructs of the i* variant into elements in the ontology OntoiStar
according to proposed transformation rules.

4. Classify the additional concepts of the i* variant in the OntoiStar taxonomy according with
their relationships with the concept in the ontology.

5.2.1 Identify additional constructs of the i* variant
The first step of the method is to analyze which constructs of the i* variant are not already present in
the ontology OntoiStar. A list of the elements included into the ontology OntoiStar is presented in
Table 5-3.

5.2.2 Categorize additional constructs of the i* variant
The second step of the method is related with the categorization of the additional constructs of the i*
variant identified during the first step. A set of categories is proposed. The additional constructs must
be located in a category. The domain of this thesis corresponds to the domain of the i* variants and
each variant represents a modeling language based on an extension of the i* framework; hence, the
context is related to modeling languages. A metamodel is used to define the concepts and the
relationships between concepts of a modeling language [10]. Therefore, Model Driven Engineering
ideas have been used for defining the categories necessaries for categorize the constructs of a

5.2 An ontology based on OntoiStar for a specific i* variant

61

modeling language, in this case of any i* variant. The categories have been proposed according with
the type of elements that a metamodel may contain. Namely, concepts and relationships, where
some concepts have their own specific characteristics modeled as attributes. The categories defined
are:
Concept: An additional construct from the i* variant is categorized as concept when it corresponds to
a representation of a something in the real world.
Relationship: An additional construct from the i* variant is categorized as relationship when it
corresponds to a relationship of two or more concepts.
Attribute: An additional construct from the i* variant is categorized as attribute when it is used to
define a property or characteristic of a concept. It may also refer to or set the specific value for a
given instance of such.
Attribute value: This category corresponds to those values which belong to an additional construct of
the i* variant which has been categorized as attribute. It defines a property or characteristic of a
specific instance of a concept.

This step can be followed together with the first step. As the same time that an additional construct is
identified, it can be selected its category.

5.2.3 Transform additional constructs of the i* variant
The third step of the method is related with the transformation of the additional constructs of an i*
variant into elements of the ontology OntoiStar. The transformation can be carried out in two
different ways.

a) If the additional constructs of the i* variant have been taken from the metamodel of the i*
variant and the metamodel is represented in the UML language, the transformation rules
described in section 4.3.1 and used for build the ontology OntoiStar from the i* metamodel,
can be followed for carrying out the transformation.

b) Otherwise, If the additional constructs of the i* variant have been taken from a different
specification of the i* variant, such as text description, a redefinition of the transformation
rules described in section 4.3.1 is proposed. The redefinition of the transformation rules is
conducted in order to support the transformation process of the additional constructs of an
i* variant regardless if it has a metamodel or not.

Applying the original transformation rules or the redefinition of them presented in this section it is
possible to integrate into OntoiStar the additional constructs of a specific i* variant to obtain as result
the ontology of the specific i* variant.

The original transformation rules and the redefinition of the transformation rules are presented in
Table 5-1.

Table 5-1. Rules for integrating the constructs of an i* variant into OntoiStar

Rule Original Redefined as:
1 Each concept, concept relationship and

enumeration class included in the i*
metamodel is represented as a class in
OWL.

Each concept and attribute is represented as a
class in OWL. Moreover, when a relationship is
presented a class in OWL is created for
representing the concept of the relationship.

2 Each association included in the i* Once the concept relationship class has been

Chapter 5. Development of OntoiStar+: the ontology with i* variants integrated

62

metamodel is represented as an object
property in OWL. Where its domain
corresponds to the association source
and its range corresponds to the
association target.

created. Two object properties are created to
complete the representation of the
relationship.
The domain of the first object property is the
concept relationship class and its range
corresponds to the class which represents the
source concept of the relationship.
The domain of the second object property is the
concept relationship class and its range
corresponds to the class which represents the
target concept of the relationship.

3 Each class property included in the i*
metamodel is represented with axioms in
OWL.

This rule is not used because the starting point
of this process is not a metamodel, for instance
there are not class properties defined.

4 Each enumeration element included in
the i* metamodel is represented as a
class instance of the owner enumeration
class in OWL.

Each attribute value is represented as a class
instance of the corresponding attribute class in
OWL.

5 Attributes. There are two types of
attributes:

a) Each enumeration type attribute
included in the i* metamodel is
represented as an object property in
OWL. Where its domain corresponds
to the owner class and its range
corresponds to the enumeration
class.

b) Each primitive data type attribute
included in the i* metamodel is
represented as a data property in
OWL. Where its domain corresponds
to the owner class and its range
corresponds to the primitive data
type.

Once the attribute class has been created. An
object property is created to complete the
representation of the attribute.
The domain of the object property is the class
which represents the owner concept of the
attribute, and its range corresponds to the
attribute class.

According the categories presented in section 5.2.2, an application of redefined transformation rules
is proposed. The application proposed is presented below:

 Concept: rule 1
 Relationship: rule 1 and 2
 Attribute: Rule 1 and 5 a
 Attribute value: Rule 4

5.2 An ontology based on OntoiStar for a specific i* variant

63

5.2.3.1 Nomenclature of additional constructs
Concept: the name of the concept class created after applying the rule 1 must be named as the
concept. Each word of the name of the concept class must start with capital letter without spaces
that separate them.
For example the concept actor:
The class is named: Actor

Relationship: the concept relationship class created after applying the rule 1 must be named as the
concept relationship concatenated with the word “Link”. Each word of the name of the concept
relationship class must start with capital letter without spaces that separate them.
The object properties must be named according the following:
Has_“relationship source”_“concept relationship class”_source_ref
Has_“relationship source”_“concept relationship class”_target_ref
For example the relationship is_a:
The class is named: IsALink
The object properties are named:
has_Actor_IsALink_source_ref
has_Actor_IsALink_target_ref

Attribute: The class is named with the name of the attribute. Each word of the name of the attribute
class must start with capital letter without spaces that separate them.
For example the attribute value of the Contribution type:
The class is named: ContributionType
Attribute value: the class instance is named with the name attribute value. Each word of the name of
the attribute class instance must start with capital letter without spaces that separate them.
For example the attribute “make” of the Contribution type attribute:
The class instance is named: Make.

5.2.4 Classify additional concepts of the i* variant in the OntoiStar taxonomy
The fourth step of the method is related with the classification of the additional constructs of an i*
variant according to the elements of the ontology OntoiStar. The classification is carried out by
integrating the new classes in the taxonomy of OntoiStar.
This step is performed according to the set of core i* abstract concepts defined in [3] which constitute
the basis of the existing i* variants. The concepts have been formulated from the metamodel
presented in [8]. The core concepts are: actor, intentional element, dependency, boundary, actor
relationship and intentional element relationship. Each core concept is represented as a class in the
OntoiStar taxonomy and each one represents a group of elements in the ontology according the
following definition:

 Actor: An actor represents an entity which may be an organization, a unit of an organization,
a single human or an autonomous piece of software. This concept is represented in OntoiStar
as the Actor class.

 Intentional element: An intentional element is an entity which allows relating different actors
that conform a social network or, also, expressing the internal rationality elements of an
actor. This concept is represented in OntoiStar as the IntentionalElement class.

Chapter 5. Development of OntoiStar+: the ontology with i* variants integrated

64

 Dependency: A dependency is a relationship which represents the explicit dependency of an
actor (depender) respect to the other actor (dependee). This concept is represented in
OntoiStar as the Dependency class.

 Boundary: A boundary represents a group of intentional elements. The common type of
boundary is the actor’s boundary which represents the vision of an omnipresent objective
observer with respect to the actor’s scope. This concept is represented in OntoiStar as the
actorBoundary class.

 Actor relationships: An actor relationship is a relationship between two actors. This concept is
represented in OntoiStar as the actorRelationship class.

 IntentionalElement relationship: An intentional element link represents an n-ary relationship
among intentional elements (either in the actor’s boundary or outside). This concept is
represented in OntoiStar as the InternalElementRelationship class.

The additional concepts of an i* variant must be classified according to this definition of the core
concepts. In Table 5-2 are presented the core concepts together with the corresponding classification
of the new concept classes of OntoiStar which come from the additional concepts of an i* variant. It is
specified when a new concept of an i* variant is a subclass of the class which represent a core
concept of i*.

Table 5-2. Classification of additional constructs of an i* variant

Core concept class in OntoiStar When Is a subclass of the core concept?
Actor If the additional concept describes a different type of actor.
IntentionalElement

When the additional concept class describes an additional type
of intentional element. If the additional concept is used inside
an actor boundary, its class must be a sub class of the
InternalElement class. Otherwise, the additional concept class is
subclass of IntentionalElement class.

Dependency The dependency basic structure has been defined in OntoiStar.
If an additional type of dependency includes a different
relationship it is a subclass of the DependencyRelationship
class.

Boundary If the additional concept describes a different type of boundary.
ActorRelationship If the additional concept describes a different type of actor

relationship.
IntentionalElementRelationship If the intentional element is an internal element:

InternalElementRelationship
When the additional concept class corresponds to a
relationship of internal elements. If the additional relationship
is used inside an actor boundary, its class must be a sub class of
the InternalElementRelationship class. Otherwise, the
additional relationship class is subclass of iStarRelationship
class.

5.3 An ontology merging process for generating OntoiStar+

65

The classes which represent attributes are subclasses of the class Thing. Additional concept classes
which are not part of any of the core concept presented in Table 5-2 must be classified as a subclass
of the high abstract level classes: Node and iStarRelationship.

5.3 An ontology merging process for generating OntoiStar+
An ontology merging process has been proposed for obtaining the ontology OntoiStar+. The process
consists of merging the i* variant ontologies obtained after following the method for generating the
ontology for a specific i* variant, presented in section 5.2, as many times as variants want to be
integrated (each time for each variant). OntoiStar+ must contains all the constructs of the merged i*
variant ontologies. The ontology merging process has been automated and integrated to the tool
presented in Chapter 6 as described in section 6.5.4. Two or more ontologies could be merged for
obtaining the OntoiStar+ corresponding to several i* variants. The ontology merging process consist
of apply a merging function to the i* variant ontologies. The process is iterative. It finish till obtain the
ontology with all the i* variants integrated in an ontology which corresponds to the ontology
OntoiStar+. The merging function is applied first to two i* variant ontologies. The resultant ontology is
then merged with another i* variant ontology. The resultant ontology is then merged with another i*
variant ontology and so on until obtain OntoiStar+ with the desirable i* variants integrated. The
ontology merging process is represented in Figure 5-2.

Figure 5-2. Integrating i* variants in the ontology OntoiStar+

With the presented approach the user can select the ontologies that wants to merge according with
the i* variants which the user works.
The ontology OntoiStar+ can be used for take advantage of the ontologies services, such as ontology
linking service, querying, automated reasoning and others. Moreover, the OntoiStar+ can be used in
ontologies applications as the presented in section 2.2.1.

5.4 Generating OntoiStar+ with the variants: i*, Tropos and Service-
oriented i*

In this section is presented the integration of the variants: i*, Tropos and Service-oriented i* into the
ontology OntoiStar+ as a first application of the i* variants integration methodology proposed in this
thesis. In section 2.1 the i* variants have been described and their constructs have been presented in
Table 2-1. According to the constructs presented in that table, in Table 5-3 the elements included into
the ontology OntoiStar and those constructs of each i* variant which are not part of OntoiStar are
described in order to determine the additional constructs which have to be included in the ontology
of each i* variant.
Note: attributes are preceded by the word Att.

Chapter 5. Development of OntoiStar+: the ontology with i* variants integrated

66

Table 5-3. Additional concepts of i* variants

Concept metamodel i* Tropos Service-oriented i*
Type Type Type Type

Actor -Agent
-Role
-Position

Relationships
among
actors

-Is_part_of
-Is_a
-Plays
-Covers
-Occupies

-Instance_of -Subordination

Dependency -Goal
-Softgoal
-Task
-Resource

-Att-Dependency
Strength. Values:
committed, open,
critical.

-Plan

-Service
-Process

Boundary
Intentional
element

-Goal
-Softgoal
-Task
-Resource

 -Plan

-Service
-Att-service type.
Values: basic,
composite.
-Process
-Att-process type.
Values: transactional,
no transactional.

Intentional
element
relationship

-Contribution
-Att-Contribution
type. Values: +,-.
-Decomposition
-MeansEnd

-Att-Contribution
type. Values: Make,
help, some+, break,
hurt, some-,
unknown, or.

Att-Contribution type.
Values: ++, --.

-Att-Decomposition
type. Values: and, or.

-Service relationship
-Att-Service
relationship type.
Values: mandatory,
optional, alternative,
or.
-Service goal
relationship
-Process relationship

5.4.1 The ontology for i*
In this section is presented the development of the ontology for the i* framework. The ontology has
been developed following the four steps described in section 5.2.

Step 1: identify additional constructs of the i* variant
According to the Table 5-3, the additional constructs of the i* framework are:

 Dependency Strength.
 Dependency Strength values: open, committed, critical
 Contribution_type values: make, help, some+, break, hurt, some-, unknown, or.
 Instance of

5.4 Generating OntoiStar+ with the variants: i*, Tropos and Service-oriented i*

67

Step 2: Categorize additional constructs of the i* variant
After identifying the additional constructs of the i* framework, they have been categorized according
to the categories presented in section 5.2.2 as follows:
Additional construct Member of core concept: Type of construct
Dependency Strength Dependency Attribute
Dependency Strength values Dependency Attribute value
Contribution_type values InternalElement relationship Attribute value
Instance of Actor relationship Relationship

Step 3: Transform additional constructs of the i* variant
The transformation process of the additional constructs of the i* framework into elements of the
ontology OntoiStar has been carried out following the original transformation rules presented in
section 5.2.3. This because the additional constructs has been taken from the metamodel of the i*
framework. The transformations applied are:

Attribute: Dependency Strength
Applied rule New class

1 DependencyStrength

Object properties

Domain

Range

5-a has_Dependency_DependencyStrength Dependency DependencyStrength
Attribute value: Dependency Strength values
Applied rule Owner class Instances

4 DependencyStrength Open
Committed
Critical

Attribute values: Contribution_type values
Applied rule Owner class Instances

4 ContributionType Make
Help
some+
break
hurt
some-
unknown
and
or

Relationship: Instance of
Applied rule New class

1 InstanceOfLink

Object properties

Domain

Range

2 has_Actor_InstanceOfLink_source_ref InstanceOfLink Actor
has_Actor_InstanceOfLink_target_ref InstanceOfLink Actor

Chapter 5. Development of OntoiStar+: the ontology with i* variants integrated

68

Step 4: Classify additional concepts of the i* variant into OntoiStar
The last step corresponds to classify the new classes in the taxonomy of the ontology OntoiStar. The
classification is described in section 5.2.4. The result of the classification is as follows:
Class Sub class of
DependencyStrength Thing
InstanceOfLink ActorRelationship

The resultant Ontology-i* taxonomy is presented in Figure 5-3.

Figure 5-3. Ontology-i* taxonomy

5.4.2 The ontology for Tropos
In this section is presented the development of the ontology for the Tropos framework. The ontology
has been developed following the four steps described in section 5.2.

5.4 Generating OntoiStar+ with the variants: i*, Tropos and Service-oriented i*

69

Step 1: identify additional constructs of the i* variant
According to the Table 5-3, the additional constructs of the Tropos framework are:

 Plan
 Plan dependency
 Contribution_type values: ++, --.
 Decomposition_type
 Decomposition_type values: and, or.

Step 2: Categorize additional constructs of the i* variant
After identifying the additional constructs of the Tropos framework, they have been categorized
according to the categories presented in section 5.2.2 as follows:
Additional construct Member of core concept: Type of construct
Plan Intentional Element Concept
Plan dependency Dependency Relationship
Contribution_type values InternalElement relationship Attribute value
Decomposition_type Actor relationship Attribute
Decomposition_type values Actor relationship Attribute value

Step 3: Transform additional constructs of the i* variant
The transformation process of the additional constructs of the Tropos framework into elements of
the ontology OntoiStar has been carried out following the original transformation rules presented in
section 5.2.3. This because the additional constructs has been taken from the metamodel of the
Tropos framework. The transformations applied are:

Concept: Plan
Applied rule New class

1 Plan

Relationship: Plan Dependency
Applied rule Owner class Instances

4 IntentionalType Plan_type

Attribute values: Contribution_type values
Applied rule Owner class Instances

4 ContributionType ++
 --

Attribute: Decomposition_type and
Attribute values: Decomposition_type values: and, or.
Despite of Decomposition types represent values of an attribute as Contribution types, in the Tropos
metamodel presented in [40], the decomposition values: and, or are represented each one as a class
with association. Therefore, the decomposition values are transformed also as classes and object
properties applying the original transformation rules, like additional relationships.

Chapter 5. Development of OntoiStar+: the ontology with i* variants integrated

70

And decomposition
Applied rule New class

1 AndDecomposition

Object properties

Domain

Range

2
has_InternalElement_AndDecompositionLink_source_ref AndDecomposition InternalElement
has_InternalElement_AndDecompositionLink_target_ref AndDecomposition InternalElement

Or decomposition
Applied rule New class

1 OrDecomposition

Object properties

Domain

Range

2 has_InternalElement_OrDecompositionLink_source_ref OrDecomposition InternalElement
has_InternalElement_OrDecompositionLink_target_ref OrDecomposition InternalElement

Step 4: Classify additional concepts of the i* variant into OntoiStar
The last step corresponds to classify the new classes in the taxonomy of the ontology OntoiStar. The
classification is described in section 5.2.4. The result of the classification is as follows:

Class Sub class of
Plan InternalElement
OrDecomposition OrDecomposition
AndDecomposition AndDecomposition

The resultant Ontology-Tropos taxonomy is presented in Figure 5-4.

5.4 Generating OntoiStar+ with the variants: i*, Tropos and Service-oriented i*

71

Figure 5-4. Ontology-Tropos taxonomy

5.4.3 The ontology for Service-oriented i*
In this section is presented the development of the ontology for the Service-oriented i* framework.
The ontology has been developed following the four steps described in section 5.2.

Step 1: identify additional constructs of the i* variant
According to the Table 5-3, Service-oriented i* includes all the additional constructs from i*.
Therefore for creating the ontology for Service-oriented i* the ontology of i* created in section 5.4.1
has been taken instead of the ontology OntoiStar. The additional constructs of the Service-oriented i*
framework are:

 Subordination
 Service
 Process
 Service_type

Chapter 5. Development of OntoiStar+: the ontology with i* variants integrated

72

 Service_type values: basic, composite.
 Process_type
 Process_type values: transactional, no transactional.
 Service dependency
 Process dependency
 Service_relationship
 Service_relationship_type
 Service_relationship_type values: mandatory, optional, alternative, or.
 Service_goal_relationship
 Process_relationship

Step 2: Categorize additional constructs of the i* variant
After identifying the additional constructs of the Service-oriented i* framework, they have been
categorized according to the categories presented in section 5.2.2 as follows:
Additional construct Member of core concept: Type of construct
Subordination Actor relationship Relationship
Service Intentional Element Concept
Process Intentional Element Concept
Service_type Intentional Element Attribute
Service_type values Intentional Element Attribute value
Process_type Intentional Element Attribute
Process_type values Intentional Element Attribute value
Service dependency DependencyRelationship Relationship
Process dependency InternalElementRelationship Relationship
Service_relationship InternalElementRelationship Relationship
Service_relationship_type InternalElementRelationship Attribute
Service_relationship_type values InternalElementRelationship Attribute value
Service_goal_relationship InternalElementRelationship Relationship
Process_relationship InternalElementRelationship Relationship

Step 3: Transform additional constructs of the i* variant
The transformation process of the additional constructs of the i* framework into elements of the
ontology OntoiStar has been carried out following the redefined transformation rules presented in
section 5.2.3. This because the additional constructs has been taken from the textual description of
the Service-oriented i* framework. The transformations applied are:

Relationship: subordination
Applied rule New class

1 SubordinationLink

Object properties

Domain

Range

2 has_Actor_SubordinationLink_source_ref SubordinationLink Actor
has_Actor_SubordinationLink_target_ref SubordinationLink Actor

5.4 Generating OntoiStar+ with the variants: i*, Tropos and Service-oriented i*

73

Concept: Service
Applied rule New class

1 Service

Concept: Process
Applied rule New class

1 Process

Attribute: Service_type
Applied rule New class

1 ServiceType

Object properties

Domain

Range

5-a has_Service_ServiceType Service ServiceType

Attribute values: Service_type values
Applied rule Owner class Instances

4 ServiceType Basic
Composite

Attribute: Process_type
Applied rule New class

1 ProcessType

Object properties

Domain

Range

5-a has_Process_ProcessType Service ServiceType

Attribute values: Process_type values
Applied rule Owner class Instances

4 ProcessType Transactional
No transactional

Dependency: Service dependency
The service dependency includes the common representation of a dependency which is already
defined in the ontology OntoiStar, but additionally includes a relationship between the dependum
(specifically a goal) and a service. The service dependency is represented as follows:
Applied rule New class

1 ServiceDependumLink

Object properties

Domain

Range

2 Has_Service_ServiceDependum_source_ref ServiceDependumLink Service
Has_Service_serviceDependum_target_ref ServiceDependumLink Goal

Dependency: Process dependency
For representing a process dependency, it is divided in two relationships:

1) The relationship between a service and a set of processes

Chapter 5. Development of OntoiStar+: the ontology with i* variants integrated

74

Applied rule New class
1 ProcessesSet

Object properties

Domain

Range

2 has_Service_ProcesesSet_source_ref ProcessesSet Service
has_service_ProcesesSet_target_ref ProcessesSet Process

2) The relationship between a process and a goal

Applied rule New class
1 ProcessGoalLink

Object properties

Domain

Range

2 has_Process_ProcessGoalLink_source_ref ProcessGoalLink Process
has_Process_ProcessGoalLink_target_ref ProcessGoalLink Goal

Relationship: Service_relationship
Applied rule New class

1 ServiceLink

Object properties

Domain

Range

2 has_service_ServiceLink_source_ref ServiceLink Service
has_service_ServiceLink_target_ref ServiceLink Service

Attribute: Service_relationship_type
Applied rule New class

1 ServiceLinkType

Object properties

Domain

Range

5-a has_ServiceLink_ServiceLinkType ServiceLink ServiceLinkType

Attribute values: Service_relationship_type values
Applied rule Owner class Instances

4 ServiceLinkType Mandatory
Optional
Alternative
Or

Relationship: Service_goal_relationship
Applied rule New class

1 ServiceGoalLink

Object properties

Domain

Range

2 has_Service_ServiceGoalLink_source_ref ServiceGoalLink Service
has_Service_ServiceGoalLink_target_ref ServiceGoalLink Goal

5.4 Generating OntoiStar+ with the variants: i*, Tropos and Service-oriented i*

75

Relationship: Process_relationship
Applied rule New class

1 ProcessLink

Object properties

Domain

Range

2 has_Process_ProcessLink_source_ref ProcessLink Process
has_Process_ProcessLink_target_ref ProcessLink Process

Step 4: Classify additional concepts of the i* variant into OntoiStar
The last step corresponds to classify the new classes in the taxonomy of the ontology OntoiStar. The
classification is described in section 5.2.4. The result of the classification is as follows:
Class Subclass of
SubordinationLink ActorRelationship
Service InternalElement
Process InternalElement
ServiceType Thing
ProcessType Thing
ServiceDependumLink DependencyRelationship
ProcessesSet InternalElementRelationship
ProcessGoalLink InternalElementRelationship
ServiceLink InternalElementRelationship
ServiceLinkType Thing
ServiceGoalLink InternalElementRelationship
ProcessLink InternalElementRelationship

The resultant Ontology-Service-orientedi* taxonomy is presented in Figure 5-5.

Chapter 5. Development of OntoiStar+: the ontology with i* variants integrated

76

Figure 5-5. Ontology-Service-orientedi* taxonomy

5.4 Generating OntoiStar+ with the variants: i*, Tropos and Service-oriented i*

77

5.4.4 Following the ontology merging process for generating OntoiStar+
The method for generating the ontology for a specific i* variant presented in section 5.2 and the
ontology merging process presented in section 5.3 have been applied in order to obtain the ontology
OntoiStar+ integrated with the variants: i*, Tropos and Service-oriented i*. First the ontologies for the
three variants are developed following the integration method. The ontology for i* has been called
OntoiStar-iStar, the ontology for Tropos has been called OntoiStar-Tropos and the ontology for
Service-oriented i* has been called OntoiStar-SOiStar. Once the ontologies have been developed the
next step is to merge the three ontologies in order to obtain OntoiStar+ following the ontology
merging process. The merging has been carried out as follow:
The ontology of i* have been merged with the ontology of Tropos. The resultant ontology
corresponds to the ontology with the constructs of i* and Tropos, which have been called OntoiStar-
iStar-Tropos. Then the ontology OntoiStar-iStar-Tropos have been merged with the ontology
OntoiStar-SOiStar, the ontology of Service-oriented i*. The resultant ontology contains the constructs
of i*, Tropos and Service-oriented i*. This ontology is which corresponds to OntoiStar+. In Figure 5-6
is presented the OntoiStar+ development process with the variants: i*, Tropos and Service-oriented
i*.

Figure 5-6. Application of the OntoiStar+ development process

The ontology OntoiStar+ corresponds to the ontology integrated with the variants: i*, Tropos and
Service-oriented i* and it has been renamed as: i*&Tropos&Service-orientedi*. The ontology
i*&Tropos&Service-orientedi* can be used for take advantage of the ontologies services, such as
ontology linking service, querying, automated reasoning and others. Moreover, the ontology can be
used in ontologies applications as the presented in section 2.2.1.

The resultant i*&Tropos&Service-orientedi* taxonomy is presented in Figure 5-7.

Chapter 5. Development of OntoiStar+: the ontology with i* variants integrated

78

Figure 5-7. Ontology-i*&Tropos&Service-orientedi* taxonomy

5.5 Summary

79

5.5 Summary
In this chapter the development of the ontology OntoiStar+ has been presented. The purpose of the
process described in this chapter is the integration of all the constructs of several i* variants into a
single ontology called OntoiStar+. The name “OntoiStar+” used to call to the ontology, is a general
term that indicates that the ontology contains the constructs of two or more i* variants no matter
which or how many are the variants. The development of the ontology OntoiStar+ has been divided in
two sub-processes: sub-process 1, the generation of the ontology of a specific i* variant based on the
ontology OntoiStar; and sub-process 2, an ontology merging process for integrating the desirable i*
variants in the ontology OntoiStar+. For the achievement of the sub-process 1, a method comprised
with a set of four steps has been proposed. The steps guide the procedure for identify, categorize,
transform and classify the additional constructs of an i* variant in order to obtain the ontology of the
variant. For the achievement of the sub-process 2, an ontology merging process have been proposed
in order to obtain the ontology OntoiStar+ by merging the i* variant ontologies obtained after
following the sub-process 1 as many times as variants want to be integrated (one time for each i*
variant). The ontology merging process has been automated and integrated to the tool presented in
Chapter 6 as described in section 6.5.4. As a first application of the methodology presented in this
thesis, the integration of the three variants: i*, Tropos and Service-oriented i* have been carried out.
The resultant ontology OntoiStar+ contains the constructs of the three i* variants and it has been
renamed as “i*&Tropos&Service-orientedi*”. i*&Tropos&Service-orientedi* is the input of the
process 2 of the phase 2: The transformation from i* based model into OntoiStar+, where the
ontology is used for the automatic mapping process of i* based models into ontologies.

 81

Chapter 6 Automatic transformation process: from i* based
model into OntoiStar+

Automatic transformation process: from i* based model into
OntoiStar+

6.1 Introduction
In Chapter 4 and Chapter 5 have been introduced the proposed methodology for integrating i*
variants at the level of metamodels (layer M2) according to the MDE approach. In this chapter the
transformation from the organizational modeling domain into the ontology domain at the level of
models (layer M1) is presented. That is, the transformation of i* based models into instances of
OntoiStar+. The process of transformation has been automated by means of a tool called TAGOOn –
(Tool for the Automatic Generation of Organizational Ontologies). The actual version of TAGOOn
supports the automatic transformation of an organizational model expressed in the variants: i*,
Tropos and Service-oriented i* into instances of the ontology OntoiStar+. The ontology OntoiStar+ in
this case corresponds to the ontology “i*&Tropos&Service-orientedi*” which has been obtained after
applying the methodology for integrating i* variants. The set of mapping rules implemented in
TAGOOn are presented. The mapping rules can be extended in order to expand the applicability of
TAGOOn in the transformation of models from additional i* variants.
The context of this chapter corresponds to the phase 2 of this thesis: The transformation from i*
based model into OntoiStar+ as shown in Figure 6-1. This phase is divided in two processes. The first
process corresponds to the description of the format of the input file of the tool. The input is an XML
file which contains the i* based model represented in the iStarML specification language [3]. This
process is described in section 6.3. The second process is divided in two sub-processes: the definition
of mapping rules from iStarML to OntoiStar and the development of TAGOOn described in sections
6.4 and 0 respectively. The definition of mapping rules from iStarML to OntoiStar presents the
mapping rules used for transforming an i* based model represented in the iStarML format into
instances of the ontology OntoiStar+. The development of TAGOOn presents the tool
implementation, describing the technologies that were used for the implementation, the modules
developed and some screens of the user interface. For describing the development of the phase 2 in
section 6.2 is presented the transformation process, since the graphical representation of the i*
based model till the output of the tool which corresponds to an instantiated ontology.

Chapter 6. Automatic transformation process: from i* based model into OntoiStar+

82

Figure 6-1. Phase 2: The transformation from i* based model to OntoiStar+

6.2 Description of the transformation process
TAGOOn – (Tool for the Automatic Generation of Organizational Ontologies) has been developed for
the automatic transformation from an i* based model into an ontology derived from the concepts of
the ontology OntoiStar+. The tool supports the automatic transformation of models expressed in the
variants: i*, Tropos and Service-oriented i*. The transformation process goes from a graphical i*
based model till an instantiated ontology. The transformation process flow of TAGOOn is presented in
Figure 6-2. The starting point is a graphical i* based model developed with i*, Tropos or service-
oriented i*. To carry out the automatic transformation, the i* based model must be represented in
the XML format defined for the iStarML specification language which is described in section 6.3. Once
the i* based model has been represented according iStarML, it must be saved in an iStarML file with
extension .xml or .istarml. This iStarML file corresponds to the input of TAGOOn. The iStarML file is
parsed during the execution of TAGOOn in order to apply mapping rules for transforming the i* based
model into an ontology. The mapping rules implemented in TAGOOn are described in section 6.4.
Information about the development of the tool is presented in section 6.5. The output of the tool is
an OWL file with a knowledge base which contains as Tbox the ontology OntoiStar+ and as Abox the
instances of the elements of OntoiStar+ which represent the organizational knowledge contained in
the i* based model stored in the iStarML file. The OWL file can be imported with an ontology editor
for modifying the knowledge base, querying and reasoning the knowledge or applying any service
that the ontology technology offers as presented in section 2.2. Moreover, the OWL fine could be
used by ontology based applications defined for specific purposes as presented in section 2.2.1.

6.3 The i* based model representation in the iStarML format

83

Figure 6-2. Transformation process flow

6.3 The i* based model representation in the iStarML format
TAGOOn must receive as input an i* based model (defined in i*, Tropos or service-oriented i*),
represented in a computer language. A computer language is described by a formal language that
defines precisely the data format and syntax of the computer language by means of a set of rules
better known as grammar. This formal language is called specification language. The specification
language used to represent the i* based models is the iStarML [3].
The iStarML specification language corresponds to a XML interchange format generated with the
purpose of have a common format containing the common conceptual framework of the main i*
language variations. The iStarML tags are described in section 3.3.3, where the iStarML language has
been briefly described. The graphic expressions are not considered for the purposes of this project.
The process for obtaining an i* based model represented in the iStarML format can be done manually
or automatically. In section 6.3.1 is described the iStarML grammar useful for defining manually an i*
based model in the iStarML format. The grammar specifies how the iStarML tags can be used for
representing the i* models and the core concepts of other variants. In addition to the description of
the grammar, in this section is described how to represent the additional elements of the variants:
Tropos and Service-oriented i*.

6.3.1 The iStarML grammar for describing i*, Tropos and Service-oriented i* models
The iStarML specification language corresponds to a XML interchange format which embody the i*
core concepts. Each concept has been represented with a XML tag and the concepts variants are
represented using attributes. The main iStarML set of tags are presented in Table 3–1. The iStarML
grammar [41] specifies how the iStarML tags can be used for representing the i* based model. Some
concepts from Tropos and service-oriented i* (described in sections 2.1.2 and 2.1.3 respectively) are
not defined in the grammar of iStarML. However, those concepts can be expressed using open
options on the same specification of iStarML. In this chapter, besides describing the grammar of
iStarML, it is described how to represent those concepts from Tropos and service-oriented i* which
are not part of the iStarML specification. The concepts are represented using the attributes of tags
where the option “String” appears. Specifically in tags: <ielement>, concepts as plan, service and
process could be defined using the option “string” in the attribute “type”; in the tag <ielementLink>,
relationships as service relationship, service dependency, process relationship, process dependency
and service-goal relationship could be defined using the option “string” in the attribute “type”. The
definition of additional concepts of Tropos and Service-oriented i* is described along with the
definition of core concepts of i* in next sections where the related <ielement> tag and
<ielementLink> tag are presented. The description of the iStarML grammar has been taken from “The

Chapter 6. Automatic transformation process: from i* based model into OntoiStar+

84

i* Mark-up Language: REFERENCE’S GUIDE” [41]. It has been adapted for including the additional
elements from Tropos and Service-oriented i*.

6.3.1.1 Basic structure of the iStarML format

The syntactical options of iStarML are represented with the extended BNF meta language [42]. The
characters “<” and “>” are part of the iStarML language (used in tags); therefore it is not possible for
them to be part of the meta language. Instead of these characters the defined elements are marked
using the italic style. The meta symbols definition is:

Italic string means a language concept (in place of the traditional BNF symbols
“<“ and “>“)

::= Means a language definition.
[] Means an optional language structure, 0 or 1 time.
{ } Means that a language structure could be repeated 0 or more times.
() Group of language structures.
| Means options’ separation.

Some italic symbols are considered terminal symbols when they are referred to traditional data types,
such as integer, real or string.

Organizational model definition
The tag <istarml> is the main tag of iStarML. It can content only the <diagram> tag. Under this
structure it is possible to store on the same file a set of different i* diagrams.

istarmlFile::= <istarml version=”1.0”> diagramTag {diagramTag} </istarml>

Diagram definition
The tag <diagram> defines an organizational model. Multiple <diagram> can be defined into
<istarml>.

diagramTag::= <diagram basicAtts [author=string] {extraAtt}>

[graphic-diagram]{[actorTag]|[ielementExTag]}
</diagram>

extraAtt::= atributeName=atributeValue

basicAtts::= [id=”string”] name=”string” | id=”string” [name=”string”]

Actor definition
The <actor> tag has been defined for representing the actors. The different types of actor: Agent,
Role and Position, can be handled by using the type attribute.

actorTag::= <actor basicAtts [typeAtt] {extraAtt}>

[graphic-node] {actorLinkTag} [boundaryTag]
</actor> |
<actor basicAtts [typeAtt] {extraAtt} /> |
<actor aref=”string” /> |

6.3 The i* based model representation in the iStarML format

85

<actor aref=”string”> [graphic-node] </actor>

typeAtt::= type: “actorType”
actorType::= basicActorType | string
basicActorType::= agent | role | position

Intentional elements definition
The <ielement> tag has been defined for representing the intentional elements. The different types of
intentional elements are: goal, softgoal, resource or task. Tropos and services-oriented i* consider
additional types, these are: Plan, Service and Process. These can be represented using the <ielement>
tag, specifically the “string” option defined in “itype” as is shown below.

ielementTag::= <ielement ieAtts> [graphic-node] {ielementLinkTag} </ielement> |

<ielement ieAtts/> |
<ielement iref=”string”/> |
<ielement iref=”string”> [graphic-node] </ielement>

ielementExTag::= <ielement ieAtts>
[graphic-node] [dependencyTag]
{ielementLinkTag} </ielement> |
ielementTag

ieAtts::= basicAtts type=”itype” [state=”istate”] {extraAtt}
itype::= basic- itype | string = (plan | service | process)
basic-itype::= goal | softgoal | task | resource
Istate::= Undecided | satisfied | weakly satisfied | denied | weakly denied | string

Actor’s boundary definition
The <boundary> tag has been defined for representing the actor’s boundary. A boundary tag
represents the internal state of an actor.

boundaryTag::= <boundary [type=”string”]

[graphic-path] {[ielementTag] | [actorTag]}
 </boundary>

Actor’s rationale definition
The <ielementLink> tag has been defined for representing the actor’s rationale. The actor’s rationale
is given by the multiple relationships which are established among intentional elements either
belonging to its boundary or outside of it. The different types of intentional element relationships
are: decomposition, means-end and contribution. Services-oriented i* consider additional types of
relationships between intentional elements, in particular Service and Process, these relationships are:
service_relationship, service-goal_relationship, process_relationship, process_dependency. These can
be represented using the <ielementLink> tag, specifically the “string” option defined in “type” inside
“linkAtts” as is shown below.

Chapter 6. Automatic transformation process: from i* based model into OntoiStar+

86

ielementLinkTag::= <ielementLink linkAtts>
[graphic-path] ielementTag_{ielementTag}
 </ielementLink>

linkAtts::= type= “decomposition” [value=(“and”|”or”)] |
type= “means-end” [value=”string”] |
type= “contribution” [value=”contribution-value”] |
type= “string= (service_relationship | service-goal_relationship |
process_relationship | process_dependency”) [value= “string =
(mandatory | optional | alternative | or)”]

contribution-value::= + | - | sup | sub | ++ | -- | break | hurt | some - | some + | unknown |
equal | help | make | and | or

Dependency definition
The <dependency>, <depender>, <dependee> tags has been defined for representing a dependency.
The dependency relationship is represented by means of a specific intentional element which makes
the link among the involved actors (named depender or dependee).

dependencyTag::= <dependency>

dependerTag {dependerTag} {dependeeTag}
</dependency>

dependerTag::= <depender [iref=”string”] aref=”string”
[value=”dep-type”]/> |
<depender [iref=”string”] aref=”string”
[value=”dep-type”]> [graphic-path] </depender>

dependeeTag::= <dependee [iref=”string”] aref=”string”
[value=”dep-type”]/> |
<dependee [iref=”string”] aref=”string”
[value=”dep-type”]> [graphic-path] </dependee>

dep-type::= open | committed | critical | delegation | permission | trust | owner | string

Actor’s relationship definition
The <ActorLink> tag has been defined for representing the actor’s relationship. Traditional actors’
relationships are: is_part_of, is_a, plays, occupies and covers.

actorLinkTag::= <actorLink type=”actorLink-type” aref=”string”>

[graphic-path] </actorLink> |
<actorLink type=”actorLink-type” aref=”string”/>

actorLink-type::= Is_part_of | is_a | instance_of | plays | covers | occupies | string

6.4 Mapping rules from iStarML to OntoiStar+

87

6.3.2 The automatically representation of an i* model in the iStarML format
In this section is presented an available tool called “OME to iStarML” [43] which automatically
transform an i* model built in the OME tool [44] into an XML file according to the iStarML format.
“OME to iStarML” has been developed following the iStarML grammar presented in section 6.3.1.
The OME tool is a graph editor of i* models which have been developed in Java. The last version is
OME3. OME3 allows building strategic dependency and strategic rationale models. As output, OME3
store the i* model in a file with .tel extension. For automatically represent the i* model built with
OME3, “OME to iStarML” parses the .tel file, applies mapping rules and provides as output the i*
model represented in the iStarML format.
The use of the iStarML specification language is growing since it provides a way to achieve the
interoperability of i* models built from different tools. Other tools are currently being developed for
generating automatically the iStarML representation of an i* model built in tools like jUCMNav [45]
and HiME [46]. As well as jUCMNav and HiME, any i* based modeling tools (a large list of available i*
tools is presented in http://istar.rwth-aachen.de/tiki-index.php?page=i*) could use the iStarML
specification to translate their output file to iStarML format. Further, future i* tools could use the
iStarML specification to generate their output file directly in iStarML format. As the use of the iStarML
format is increasing, it is expected that new i* based modeling tools adopt the iStarML format for
storing their models. At the moment there are no tools available for automatic generation of models
built with Tropos or Service-oriented i*, therefore, for using the tool presented in this thesis the
iStarML file must be generated manually.

6.4 Mapping rules from iStarML to OntoiStar+
The transformation process is followed according a set of established mapping rules between
elements of the iStarML format and elements of OntoiStar+.
Two types of mapping rules have been defined:
One to one: occurs when each element in the iStarML file has one, and only one, linked element in
OntoiStar+.
One to many: occurs when each element in the iStarML file has two or more linked elements in
OntoiStar+.
The mapping rules are divided in 8 groups:

 Diagram
 Actor
 Intentional element
 Actor Relationship
 Actor boundary
 Internal element relationship
 Dependency
 Service dependency

The syntax of the mapping rules is defined as follow:

<> It represents a tag of the iStarML file
OntoiStar+: The string followed by “OntoiStar+:” represents an element in the ontology

OntoiStar+
“” It represents an attribute of a tag of the iStarML file

(this) It refers to the individual represented for the actual tag.

Chapter 6. Automatic transformation process: from i* based model into OntoiStar+

88

(father) It refers to the individual represented for the father of the actual tag.
(attribute) It refers to the value contained in the corresponding attribute of the actual

tag.

6.4.1 Diagram mapping rules
This group contains a main rule related with the Diagram tag and three sub rules corresponding to the
diagram attributes.
R. 1 If <diagram> then

OntoiStar+: Diagram Type: class

Rules for attributes of <diagram>
R. 1.1 If “Author” !=null then

OntoiStar+:
Diagram_author

Type:
Dataproperty

Domain:
Diagram

 Range: String

R. 1.2 If “id” !=null then

OntoiStar+:
Diagram_id

Type:
Dataproperty

 Domain:
Diagram

Range: String

R. 1.3 If “name” !=null then

OntoiStar+:
Diagram_name

Type:
Dataproperty

 Domain:
Diagram

 Range: String

6.4.2 Actor mapping rules
This group contains a main rule related with the actor tag, two sub rules corresponding to the
diagram attributes, and two sub rules related with the father tag of the actor tag.
R. 2 If <actor> then

If “type” = null then
OntoiStar+: Actor Type: class

Else If “type” = Role then

OntoiStar+: Role Type: class

Else If “type” = Position then
OntoiStar+: Position Type: class

Else If “type” = Agent then

OntoiStar+: Agent Type: class

Rules for attributes of <actor>
R. 2.1 If “id” !=null then

OntoiStar+: Node_label Type: Dataproperty Domain: Node Range: String

R. 2.2 If “name” !=null then
individual's URI = OntoiStar+: “name”

This rule is used to indicate that the actor represented for this tag is member of a diagram.

6.4 Mapping rules from iStarML to OntoiStar+

89

R. 2.3 If <diagram> is the father tag of <actor> then
OntoiStar+:
has_Diagram_elements

Type:
Objectproperty

Domain:
Diagram (father)

Range: Actor (this)

This rule is used to indicate that the actor represented for this tag is member of the boundary of
another actor.
R. 2.4 If <boundary> is the father tag of <actor> then

OntoiStar+:
has_Actor_boundary_elements

Type:
Objectproperty

Domain:
ActorBoundary (father)

Range: Actor (this)

6.4.3 Intentional element mapping rules
This group contains two main rules related with the ielement tag, and three sub rules corresponding
to the ielement attributes.
R. 3 If (<ielement> and (<diagram> is the father tag of <ielement>)) then

OntoiStar+: Dependum Type: class

OntoiStar+:
has_IntentionalElement_IntentionalType

Type:
Objectproperty

Domain:
Dependum (this)

Range: IntentionalType
(ielement type)

OntoiStar+:
has_Diagram_elements

Type:
Objectproperty

Domain:
Diagram (father)

Range:
ielement (this)

R. 4 If (<ielement> and (<boundary> or <ielementLink> is the father tag of <ielement>)) then

OntoiStar+:
has_Actor_boundary_elements

Type:
Objectproperty

Domain:
ActorBoundary (father)

Range:
InternalElement(this)

If “type” = Goal then

OntoiStar+: Goal Type: class

Else If “type” = Softgoal then
OntoiStar+: Softgoal Type: class

Else If “type” = Resource then

OntoiStar+: Resource Type: class

Else If “type” = Task then
OntoiStar+: Task Type: class

Else If “type” = Plan then

OntoiStar+: Plan Type: class

Else If “type” = Service then
OntoiStar+: Service Type: class

OntoiStar+:
has_Service_ServiceType

Type:
Objectproperty

Domain:
Service (this)

Range:
ServiceType (state)

Chapter 6. Automatic transformation process: from i* based model into OntoiStar+

90

Else If “type” = Process then
OntoiStar+: Process Type: class

OntoiStar+:
has_Process_ProcessType

Type:
Objectproperty

Domain:
Process (this)

Range: ProcessType
(state value)

Rules for attributes of <ielement>
R. 4.1 If “id” !=null then

OntoiStar+:
Node_label

Type:
Dataproperty

Domain: Node Range: String

R. 4.2 If “name” !=null then

individual's URI = OntoiStar+: “name”

R. 4.3 If (“state” !=null and (“type” != Service or “type” != Process)) then
OntoiStar+:
IntentionalElement_state

Type:
Dataproperty

Domain:
IntentionalElement

Range: String

6.4.4 Actor relationships mapping rules
This group contains a main rule related with the actorLink tag.
R. 5 If <actorLink> then

If “type” = is_part_of then
OntoiStar+: isPartOfLink Type: class

OntoiStar+:
has_Actor_IsPartOfLink_source_ref

Type:
Objectproperty

Domain:
IsPartOfLink

Range:
Actor (father)

OntoiStar+:
has_Actor_IsPartOfLink_target_ref

Type:
Objectproperty

Domain:
IsPartOfLink

Range:
Actor (aref)

If “type” = is_a then

OntoiStar+: isALink Type: class

OntoiStar+:
has_Actor_IsALink_source_ref

Type:
Objectproperty

Domain:
IsALink

Range:
Actor (father)

OntoiStar+:
has_Actor_IsALink_target_ref

Type:
Objectproperty

Domain:
IsALink

Range:
Actor (aref)

If “type” = instance_of then

OntoiStar+: InstanceOfLink Type: class

OntoiStar+:
has_Actor_InstanceOfLink_source_ref

Type:
Objectproperty

Domain:
InstanceOfLink

Range:
Actor (father)

OntoiStar+:
has_Actor_InstanceOfLink_target_ref

Type:
Objectproperty

Domain:
InstanceOfLink

Range:
Actor (aref)

6.4 Mapping rules from iStarML to OntoiStar+

91

If “type” = plays then
OntoiStar+: PlaysLink Type: class

OntoiStar+:
has_Actor_PlaysLink_source_ref

Type:
Objectproperty

Domain:
PlaysLink

Range:
Agent (father)

OntoiStar+:
has_Actor_PlaysLink_target_ref

Type:
Objectproperty

Domain:
PlaysLink

Range:
Role (aref)

If “type” = covers then

OntoiStar+: CoversLink Type: class

OntoiStar+:
has_Actor_CoversLink_source_ref

Type:
Objectproperty

Domain:
CoversLink

Range:
Position (father)

OntoiStar+:
has_Actor_CoversLink_target_ref

Type:
Objectproperty

Domain:
CoversLink

Range:
Role (aref)

If “type” = occupies then

OntoiStar+: OccupiesLink Type: class

OntoiStar+:
has_Actor_OccupiesLink_source_ref

Type:
Objectproperty

Domain:
OccupiesLink

Range:
Agent (father)

OntoiStar+:
has_Actor_OccupiesLink_target_ref

Type:
Objectproperty

Domain:
OccupiesLink

Range:
Position (aref)

If “type” = plays then

OntoiStar+: PlaysLink Type: class

OntoiStar+:
has_Actor_PlaysLink_source_ref

Type:
Objectproperty

Domain:
PlaysLink

Range:
Agent (father)

OntoiStar+:
has_Actor_PlaysLink_target_ref

Type:
Objectproperty

Domain:
PlaysLink

Range:
Role (aref)

If “type” = subordination then

OntoiStar+: SubordinationLink Type: class

OntoiStar+:
has_Actor_SubordinationLink_source_ref

Type:
Objectproperty

Domain:
SubordinationLink

Range:
Actor (father)

OntoiStar+:
has_Actor_SubordinationLink_target_ref

Type:
Objectproperty

Domain:
SubordinationLink

Range:
Actor (aref)

6.4.5 Boundary mapping rules
This group contains two main rules related with the boundary tag, and a sub rule corresponding to
the boundary attribute.
R. 6 If <boundary> then

Chapter 6. Automatic transformation process: from i* based model into OntoiStar+

92

OntoiStar+: ActorBoundary Type: class

OntoiStar+: has_Actor_Boundary Type:
Objectproperty

Domain:
Actor (father)

Range:
ActorBoundary (this)

Rules for attributes of <boundary>
R. 6.1 If “type” != null then

OntoiStar+:
Boundary_type

Type: Dataproperty Domain:
ActorBoundary

Range: String

6.4.6 Internal element relationships mapping rules
This group contains a main rule related with the internal element relationships tag, and four sub rules
corresponding to the internal element relationships attributes.
R. 7 If <ielementLink> then

If “type” = decomposition or AndDecomposition then
OntoiStar+: AndDecompositionLink Type: class

OntoiStar+: has_InternalElement_
AndDecompositionLink_source_ref

Type:
Objectproperty

Domain:
AndDecompositionLink

Range:
InternalElement (father)

OntoiStar+: has_InternalElement
_AndDecompositionLink_target_ref

Type:
Objectproperty

Domain:
AndDecompositionLink

Range:
InternalElement (son)

If “type” = OrDecomposition then

OntoiStar+: OrDecompositionLink Type: class

OntoiStar+: has_InternalElement_
OrDecompositionLink_source_ref

Type:
Objectproperty

Domain:
OrDecompositionLink

Range:
InternalElement (father)

OntoiStar+: has_InternalElement_
OrDecompositionLink_target_ref

Type:
Objectproperty

Domain:
OrDecompositionLink

Range:
InternalElement (son)

If “type” = means-end then

OntoiStar+: MeansEndLink Type: class
OntoiStar+: has_InternalElement_
MeansEndLink_source_ref

Type:
Objectproperty

Domain:
OrDecompositionLink

Range:
InternalElement (father)

OntoiStar+: has_InternalElement_
MeansEndLink_target_ref

Type:
Objectproperty

Domain:
OrDecompositionLink

Range:
InternalElement (son)

If “type” = contribution then

OntoiStar+: ContributionLink Type: class

OntoiStar+: has_InternalElement_
ContributionLink_source_ref

Type:
Objectproperty

Domain:
ContributionLink

Range:
InternalElement (father)

OntoiStar+: has_InternalElement_
ContributionLink_target_ref

Type:
Objectproperty

Domain:
ContributionLink

Range:
InternalElement (son)

6.4 Mapping rules from iStarML to OntoiStar+

93

If “type” = service_relationship then
OntoiStar+: ContributionLink Type: class

OntoiStar+:
has_service_ServiceLink_source_ref

Type:
Objectproperty

Domain:
ServiceLink

Range:
Service (father)

OntoiStar+:
has_service_ServiceLink_target_ref

Type:
Objectproperty

Domain:
ServiceLink

Range:
Service (son)

If “type” = service-goal_relationship then

OntoiStar+: ServiceGoalLink Type: class

OntoiStar+:
has_Actor_ServiceGoalLink_source_ref

Type:
Objectproperty

Domain:
ServiceGoalLink

Range:
Service (father)

OntoiStar+:
has_Actor_ServiceGoalLink_target_ref

Type:
Objectproperty

Domain:
ServiceGoalLink

Range:
Goal (son)

If “type” = process_relationship then

OntoiStar+: ProcessLink Type: class

OntoiStar+:
has_ProcessLink_source_ref

Type:
Objectproperty

Domain:
ProcessLink

Range:
Process (father)

OntoiStar+:
has_Actor_ProcessLink_target_ref

Type:
Objectproperty

Domain:
ProcessLink

Range:
Process (son)

If “type” = process_dependency then

OntoiStar+: ProcessesSet Type: class

OntoiStar+:
has_service_ProcesesSet

Type:
Objectproperty

Domain:
Service

Range:
ProcessesSet (father)

OntoiStar+:
has_processesSet_process

Type:
Objectproperty

Domain:
ProcessesSet

Range:
Process (son)

Rules for attributes of <ielementLink> then
R. 7.1 If “id” !=null then

OntoiStar+:
iStarRelationship_id

Type:
Dataproperty

Domain:
iStarRelationship

Range: String

R. 7.2 If “name” !=null then

OntoiStar+:
iStarRelationship_name

Type:
Dataproperty

Domain:
iStarRelationship

Range: String

R. 7.3 If “type” = contribution and “value” != null then

OntoiStar+: has_ContributionLink_
ContributionType

Type:
Objectproperty

Domain:
ContributionLink

Range:
ContributionType (value)

Chapter 6. Automatic transformation process: from i* based model into OntoiStar+

94

R. 7.4 If “type” = service and “value” != null then
OntoiStar+:
has_ServiceLink_ServiceLinkType

Type:
Objectproperty

Domain: ServiceLink Range: ServiceType (value)

6.4.7 Dependency mapping rules
This group contains a main rule related with the dependency tag, and two sub rules corresponding to
the depender and dependee attributes.
R. 8 If <dependency> then

OntoiStar+: Dependency Type: class
OntoiStar+:
has_Dependency_IntentionalType

Type:
Objectproperty

Domain:
Dependency (this)

Range:
IntentionalType (father)

OntoiStar+: DependumLink Type: class

OntoiStar+: has_Dependency_
DependumLink_source_ref

Type:
Objectproperty

Domain:
DependumLink

Range:
Dependency

OntoiStar+: has_Dependency
_DependumLink_target_ref

Type:
Objectproperty

Domain:
DependumLink

Range:
Dependum (father)

 When <depender>
OntoiStar+: DependerLink Type: class

OntoiStar+: has_Dependency_
DependerLink_source_ref

Type:
Objectproperty

Domain:
DependerLink

Range:
Dependency

OntoiStar+: has_Dependency_
DependerLink_target_ref

Type:
Objectproperty

Domain:
DependerLink

Range:
Actor (aref)

R. 8.1 If “iref” =! Null then

OntoiStar+: has_Dependency_
DependerLink_target_ref

Type:
Objectproperty

Domain:
DependerLink

Range:
InternalElement (iref)

 When <dependee>
OntoiStar+: DependeeLink Type: class

OntoiStar+: has_Dependency_
DependeeLink_source_ref

Type:
Objectproperty

Domain:
DependeeLink

Range:
Dependency

OntoiStar+: has_Dependency_
DependeeLink_target_ref

Type:
Objectproperty

Domain:
DependeeLink

Range:
Dependee (aref)

R. 8.2 If “iref” =! Null then

OntoiStar+: has_Dependency_
DependeeLink_target_ref

Type:
Objectproperty

Domain:
DependeeLink

Range:
InternalElement (iref)

 When <depender> or <dependee>

6.5 Development of TAGOOn

95

R. 8.3 If “value” =! Null then
OntoiStar+: has_Dependency_
DependencyStrength

Type:
Objectproperty

Domain:
Dependency

Range:
DependencyStrength (value)

Rules for a service dependency
R. 8.4 If (“iref” = (<ielement> of “type” = Service)) then

OntoiStar+: ServiceDependumLink Type: class

OntoiStar+: has_Dependency_
ServiceDependumLink_source_ref

Type:
Objectproperty

Domain:
ServiceDependumLink

Range:
Dependum (father)

OntoiStar+:
has_Dependency_ServiceDependu
mLink_target_ref

Type:
Objectproperty

Domain:
ServiceDependumLink

Range: Service (iref)

The set of mapping rules, presented in this section, supports the transformation of the elements of
the iStarML language into elements of OntoiStar+, taking into account, those adaptations necessary
for the i*, Tropos and Service-oriented i*. The mapping rules can be extended in order to expand the
applicability of TAGOOn for the transformation of models from additional i* variants.

6.5 Development of TAGOOn
TAGOOn (Tool for the Automatic Generation of Organizational Ontologies) has been developed in
order to automate the transformation process from an i* based model to an ontology derived from
the concepts of OntoiStar+. TAGOOn supports the automatic transformation of an organizational
model expressed in i*, Tropos and Service-oriented i* into instances of the ontology OntoiStar+.
The components used for the development of TAGOOn are listed and described below.

Eclipse IDE for Java Developers: TAGOOn was developed in the Eclipse environment with the Java
programming language. The used version of Eclipse is Helios Service Release 1 and the used version of
the Java Development Kit (JDK) is the 1.6.0_26. Eclipse IDE can be downloaded from
http://www.eclipse.org/downloads/packages/eclipse-ide-java-ee-developers/indigor. The JDK can be
downloaded from http://www.oracle.com/technetwork/java/javase/downloads/index.html.

JDom: jDom is a Java representation of an XML document for easy and efficient reading,
manipulation, and writing. The used version of jDom is the 1.1.1. The jDom can be downloaded from
http://www.jdom.org/index.html.

Jena API: Jena API is an open source Java framework for building Semantic Web applications. It
provides a programmatic environment for RDF, RDFS and OWL, SPARQL and includes a rule-based
inference engine. The API provides classes and methods to load and save OWL files, to query and
manipulate OWL data models, and to perform reasoning. The used version of Jena API is the 2.6.4.
Jena API can be downloaded from http://jena.sourceforge.net/.

Protégé: Protégé is a free, open source ontology editor and knowledge-base framework. Protégé
ontologies can be exported into a variety of formats including RDF(S), OWL, and XML Schema.
Protégé is based on Java, is extensible, and provides a plug-and-play environment that makes it a

Chapter 6. Automatic transformation process: from i* based model into OntoiStar+

96

flexible base for rapid prototyping and application development. The used version of Protégé is the
3.4.6. Protégé can be downloaded from http://protege.stanford.edu/download/registered.html.

Ccistarml: Ccistarml is a java package which allows creating, importing and checking the xml syntax
and the specific istarml syntax of istarml files complaint with the iStarML version 1.0 proposal [3]. The
package was programmed using jdk1.5.0_11 and the NetBeans IDE 5.5. The used version of ccistarml
is the 0.7. Ccistarml can be downloaded from
http://www.essi.upc.edu/~gessi/iStarML/resources.html.

6.5.1 Modules of TAGOOn
The current version of TAGOOn can transform into ontologies i* based models represented with the
variants: i*, Tropos and Service-oriented i*. The i* based models must be expressed in the iStarML
format.
The main task of TAGOOn corresponds to the automatic transformation of the content of an iStarML
file into instances of an ontology called OntoiStar+ which contains all the elements of the variants: i*,
Tropos and Service-oriented i*. The development of this ontology has been described in section 5.3.
The output of TAGOOn is an OWL file with a knowledge base which contains as Tbox the ontology
OntoiStar+ and as Abox the instances of the elements of OntoiStar+ which represent the
organizational knowledge contained in the i* based model stored in the iStarML file. The OWL file can
be imported with an ontology editor for modifying, querying, applying reasoning, or applying any
other ontology service to the information of the model. Moreover, the OWL file could be used by
ontology based applications defined for specific purposes. Examples of ontology based applications
are presented in section 2.2.1.
The development of TAGOOn has been divided in three modules: the iStarML file management,
mapping process from iStarML to OntoiStar and OntoiStar management.

6.5.1.1 IStarML file management
The iStarML file management module has been developed with the purpose of read, analyze and
display the i* based model expressed in iStarML format. In this module is used the ccistarml package
to open the iStarML file and to carry out the syntactic analysis of the content of the file. The syntactic
analysis is the process of analyzing the content of an iStarML file to verify that the iStarML tags and
attributes are instantiated correctly with respect to the given iStarML grammar, which has been
presented in section 6.3.1.

6.5.1.2 Mapping process from iStarML to OntoiStar+
The central module of TAGOOn is the Mapping process. In this module each element from the
iStarML file is related with its corresponding elements in the ontology OntoiStar+ according to the
mapping rules presented in section 6.4. The procedure for mapping could be summarized in three
main steps: mapping of concepts, mapping of attributes and mapping of relationships between
concepts and attributes. JDom is used for manipulating the iStarML file which contains the i* based
model. Information of each element of the iStarML file is stored in a memory repository (called Logs)
where there is a log describing each tag presented in the file and its attributes.

6.5 Development of TAGOOn

97

6.5.1.3 OntoiStar management
TAGOOn includes a module for loading, parsing and manipulating the ontology OntoiStar+. This
module uses the Jena API for instantiating classes and properties of OntoiStar+. Also, it is possible to
generate instances of any element in the ontology and to save the instantiated ontology.

6.5.2 User interface of TAGOOn
The current version of TAGOOn has a simple Graphic User Interface (GUI). It includes three “menus”:
“File”, “Options” and “Help”. The “File menu” has the options: “Open an iStarML file”, which allows to
select the iStarML file from the Windows directory; and the option “Close”, which allows to exit the
tool. The “Options menu” has the options: “Generate OWL file”, which execute the mapping process
to transform the elements of the iStarML file into instances of OntoiStar; and “Save OWL file as…”
which allows saving the resultant OWL file in any Windows directory. In Figure 6-3 is presented the
GUI. The “menus” are located at the top of the window. The GUI contains three panels: in the panel
of the left side is displayed the content of the iStarML file; in the panel of the right side is displayed
the ontology OntoiStar+ instantiated; in the bottom panel is displayed each tag of the iStarML file and
the corresponding instantiated class.

Figure 6-3. User interface - Open an iStarML file

6.5.3 Interaction between modules of TAGOOn
The GUI of TAGOOn is responsible for interacting with the final user. When the user select the option
“open iStarML file” the GUI sends the order to the iStarML file manager module to open and parse de
iStarML file. If as result of parsing the file the iStarML file manager module sends to the GUI that the
iStarML file is syntactically correct, then the “Options menu” is activated. If the final user selects the
option “Generate OWL file” from the “Options menu” the GUI sends to the mapping process the path
of the iStarML file and the mapping process module feeds the Logs repository with the information of
the iStarML file. Logs contain all the information of each tag in the iStarML file. The mapping process
module interacts with OntoiStar+ manager module to open, instantiate, read and close the ontology.
In the module the mapping rules are implemented in order to generate the instantiated OntoiStar+

Chapter 6. Automatic transformation process: from i* based model into OntoiStar+

98

which contains the knowledge contained in the iStarML file. The interactions between modules are
shown in Figure 6-4.

Figure 6-4. Interactions between modules

6.5.4 The module for merging ontologies - additional module of TAGOOn
The module for merging ontologies is an additional module of TAGOOn. This module provides the
possibility of merge the ontologies of specifics i* variants in order to obtain the ontology OntoiStar+.
TAGOOn supports the process of merge two ontologies, providing the path of the two OWL files.
When it is necessary to merge more than two ontologies, the process must be executed several
times. The first path of an OWL file must be the path of the OWL file obtained of the last execution,
which has already previously merged. The option for merging ontologies is in the “Options menu”.

6.6 Summary
In this chapter the transformation from the organizational modeling domain into the ontology
domain at the level of models (layer M1) according to the MDE approach is presented. That is, the
transformation of i* based models into instances of OntoiStar+. The purpose of this chapter is to
describe the automatic transformation process flow and the elements required for carry out the
transformation process. The development of TAGOOn – (Tool for the Automatic Generation of
Organizational Ontologies) has been described. TAGOOn has been developed in order to automate
the transformation process from an i* based model to an ontology derived from the concepts of
OntoiStar+. The actual version of TAGOOn supports the automatic transformation of an
organizational model expressed in the variants: i*, Tropos and Service-oriented i* into instances of
the ontology OntoiStar+. The ontology OntoiStar+ in this case corresponds to the ontology
“i*&Tropos&Service-orientedi*” which has been obtained after applying the methodology for
integrating i* variants. The input of TAGOOn is described in the iStarML format, the grammar of this
format has been presented in order to demonstrate how to represent in the iStarML format each
element of the variants: i*, Tropos and Service-oriented i*. A set of mapping rules have been
proposed for the transformation from an i*, Tropos and Service-oriented i* model into instances of
the ontology OntoiStar+. The mapping rules include all the elements of the iStarML format, and
establish their corresponding elements in the ontology OntoiStar+. The mapping rules can be
extended in order to expand the applicability of TAGOOn for the transformation of models from
additional i* variants.
The development of TAGOOn – (Tool for the Automatic Generation of Organizational Ontologies) has
been described, together with the components used for its development and the modules that
constitute it.

Chapter 7 Case study

Case study

7.1 Introduction
The main objective of this thesis is to propose a methodology for integrating i* variants through the
use of ontologies. The proposed methodology has been presented in previous chapters. In order to
validate the proposed methodology for integrating i* variants, and to demonstrate that it is an
effective way to propitiate the integration of the i* variants models, a first application of the
methodology has been carried out. In section 5.4 the application of the methodology, at the level of
metamodels (layer M2) according to MDE approach, to the variants: i*, Tropos and Service-oriented
i* is presented. The ontology called “i*&Tropos&Service-orientedi*” has been obtained after
following the methodology. In Chapter 6 the application of the methodology, at the level of models
(layer M1) according to MDE approach, to the variants: i*, Tropos and Service-oriented i* is
presented. It corresponds to the development of the tool support for the automatic transformation of
models represented with the variants: i*, Tropos and Service-oriented i* into instances of the
ontology “i*&Tropos&Service-orientedi*”.
In this chapter, the application of the proposed solution has been validated with a real case study
which models represents the processes of a postgraduate institution (www.cenidet.edu.mx) that
offers Master and PhD programs. The case study is described in section 7.2. For carry out the
validation, the transformation process flow presented in Figure 6-2 has been followed (section 7.3).

7.2 Description of the case study
In order to validate the proposed solution for the accomplishment of the main objective of this thesis,
a real case study taken from [6] is presented to use it for following the transformation process. The
case study has been carried out in the domain of education institutions. It consists of a real project to
model the processes of a postgraduate institution (www.cenidet.edu.mx) that offers Master and PhD
programs in the following areas: computer science, mechanics and electronics. The objective of the
case study was to model the specific process to register students in the academic semesters of the
postgraduate programs. The actors involved in the process to register students in the educational
company are the following: vigilance agent, students, professors, faculty advisors, student control
department, studies control department, department chair, finance department, and planning
department. This information was elicited by using the manuals of processes of the institution and by
personal interviews with Directors and department managers. Figure 7-1 presents the i* dependency
model for the registering student’s case study. Some of the dependencies in which the actor
“student” is involved as the depender actor are:

 The student depends on the bank to pay the fees of the registration.
 The student depends on the Vigilance Agent to obtain a number of turn to register (the turn

establishes the order to register students).
 The student depends on the Finance Department to obtain the official payment receipt.

Chapter 7. Case study

100

 The student depends on the Student Control Department to make the registration.
 The student depends on Student Control Department to obtain the list of available courses.
 The student depends on the Student Control Department to obtain the authorized schedule.
 The student depends on the Department Chair to authorize the schedule.
 The student depends on the Thesis Advisor to make the selection of courses.
 The student depends on the Thesis Advisor to obtain the course catalogue.

In all this dependencies the student becomes vulnerable if the other actors fail to deliver a resource
or satisfy a goal. Once the dependencies among actors have been detected in the previous stage, a
rationale model needs to be created that represents the rationalities of the organizational actors.
Figure 7-2 illustrates the rationale model for registering student’s case study. In this model, the
analyst must represent the internal goals and tasks that are needed to satisfy the actor dependencies.
In this model, the student performs the following actions to register in the master or PhD program: a)
Pay fees in the bank, b) Take position in queue, c) Exchange bank receipt, d) Request courses to take,
and e) Register in the Student Control Department.
The task decomposition tree for each high-level goal is presented below.

 Pay fees
o Pay fees in the bank
o Receive bank receipt

 Take position in queue
o Register entrance
o Request turn

 Exchange bank receipt
o Deliver bank receipt
o Receipt official receipt

 Request courses to take
o Request courses
o Request authorization

 Register in the Student Control Department
o Deliver turn
o Request courses to follow
o Deliver official receipt
o Receive final schedule

The models of the case study have been represented using three variants: i*, Tropos and Service-
oriented i*.
In The content into the table cells represent the number of occurrences of a type of element within a
specific type of model. The type of element is specified in the top of the column of the cell and the
type of model is specified at the beginning of the row of the cell.

Table 7-1 the description of elements included in the models of the case study is presented. The
meaning of columns and rows are listed below:

i* - SD Strategic dependency model from the i* framework.
i* - SR Strategic rationale model from the i* framework.
Tropos – A Actor model from the Tropos framework.

7.3 Following the transformation process flow

101

Tropos - G Goal model from the Tropos framework.
SO-Global Global model from the Service-oriented i* framework.
SO-Process Process model from the Service-oriented i* framework.
SO-Protocol Protocol model from the Service-oriented i* framework.
A Actor
AR Actor relationship
G Goal
Sg Softgoal
R Resource
T Task
Pl Plan
S Service
P Process
D Decomposition
C Contribution
ME Means end
SR Service relationship
SG Service goal relationship
PR Process relationship
PD Process dependency
- It is not a member of this model

The content into the table cells represent the number of occurrences of a type of element within a
specific type of model. The type of element is specified in the top of the column of the cell and the
type of model is specified at the beginning of the row of the cell.

Table 7-1. Description of elements included in models of the case study

Model
/

No. of

A A
R

Internal elements Internal element
relationships

Dependencies

G Sg R T Pl S P D C M
E

S
R

S
G

P
R

P
D

G Sg R T Pl S

i* – SD 14 0 - - - - - - - - - - - - - - 8 1 37 7 - -
i* – SR 14 0 18 0 0 99 - - - 34 0 10 - - - - 8 0 30 5 - -
T – A 14 0 - - - - - - - - - - - - - - 8 1 37 - 7 -
T – G 14 0 14 0 0 - 107 - - 33 0 15 - - - - 8 0 30 - 5 -
SO – G 14 0 - - - - 17 - - - - - - - - 3 - - - - 17
SO – Ps 2 0 14 - - - - 1 11 4 - - 0 1 10 5 - - - - - -
SO – Pl 3 0 2 0 - 14 - - - 4 0 1 - - - - 1 0 3 1 - -

7.3 Following the transformation process flow
The transformation process flow presented in Figure 6-2 has been followed with the described case
study in order to validate the proposed solution for the accomplishment of the main objective of this
thesis. First the i* based models represented with the variants: i*, Tropos and Service-oriented i* are
presented as diagrams in section 7.3.1. Fragments of the iStarML representation of the models are
presented in section 7.3.2. The iStarML file is opened with the tool TAGOOn and the mapping process

Chapter 7. Case study

102

is executed. The output of the tool is an OWL file with a knowledge base which contains as Tbox the
ontology “i*&Tropos&Service-orientedi*” and as Abox the instances which represent the
organizational knowledge contained in the i* based model. The OWL file is imported with the
ontology editor Protégé to display the instances generated. Screens of the OWL files opened with
protégé are presented in section 7.3.3.

7.3.1 i* based models – graphical representation
Figure 7-1 and Figure 7-2 present the i* strategic dependency and the strategic rationale models for
the registering student’s case study. The strategic dependency model represents the dependencies of
the actors that are needed to accomplish the student registration. The rationale model is focused on
describing the internal behaviors needed for the actor to fulfill its dependencies with other actors.
Figure 7-3 and Figure 7-4 present the Tropos actor and goal models for the registering student’s case
study. The actor model represents the dependencies of the actors and the goal model describes the
internal behaviors needed for the actor to fulfill its dependencies with other actors.
Figure 7-5, Figure 7-6 and Figure 7-7 present the Service-oriented i* global model, a fragment of the
process model and a fragment of the protocol model for the registering student’s case study. The
global model permits the representation of the business services. The process model represents the
decomposition of the business services into a set of concrete processes that perform them. Finally,
the protocol model provides a description of a set of structured and associated activities that produce
a specific result or product for a business service.

7.3 Following the transformation process flow

103

Figure 7-1. i* – Strategic Dependency model for the case study

Chapter 7. Case study

104

D

D

D

D

D D

D

D
D

D

D
D

D

D

D

D

D

Figure 7-2. i* – Strategic Rationale model for the case study

7.3 Following the transformation process flow

105

Figure 7-3. Tropos – Actor model for the case study

Chapter 7. Case study

106

D

D

D

Figure 7-4. Tropos – Goal model for the case study

7.3 Following the transformation process flow

107

Figure 7-5. Service-oriented i* – Global model for the case study

Chapter 7. Case study

108

Figure 7-6. Service-oriented i* – fragment of the process model for the case study

7.3 Following the transformation process flow

109

Figure 7-7. Service-oriented i* – fragment of the protocol model for the case study

7.3.2 i* based models – in the iStarML format
Fragments of the iStarML representation of models of the case study are presented in order to
illustrate the use of the iStarML specification language. The fragments correspond to the models of
the case study which have been represented with the variants: i*, Tropos and Service-oriented i*.
In Figure 7-8 a fragment of the i* strategic dependency model is presented, where are represented
examples of a softgoal dependency, a goal dependency and a resource dependency between the
actors Student and Thesis advisor and a task dependency between the actors Student and
Department chair .
In Figure 7-9 a fragment of the i* strategic rationale model is presented, where is represented a
fragment of the boundary of the actor Student. In this fragment are represented examples of internal
elements of types: goal and task together with internal elements relationships of type: decomposition
and means-end.
In Figure 7-10 a fragment of the Tropos actor model is presented, where are represented examples of
a softgoal dependency, a goal dependency and a resource dependency between the actors Student
and Thesis advisor and a plan dependency between the actors Student and Department chair .
In Figure 7-11 a fragment of the Tropos goal model is presented, where is represented a fragment of
the boundary of the actor Student. In this fragment are represented examples of internal elements of
types: goal and plan together with internal elements relationships of type: decomposition and means-
end.

Chapter 7. Case study

110

In Figure 7-12 a fragment of the Service-oriented i* global model is presented, where are represented
examples of service dependencies between the actors Student and Thesis advisor. The services are
represented as internal elements inside the boundary of the actor Thesis advisor and the attribute
“iref” of the dependee tag refers to the “id” of the services.
In Figure 7-13 a fragment of the Service-oriented i* process model is presented, where is represented
a fragment of the boundary of the actor Student Control Department. In this fragment are
represented examples of internal elements of types: goal, process and service together with internal
elements relationships of type: process-goal_relationship, process_relationship, decomposition and
service-goal_relationship.
In Figure 7-14 a fragment of the Service-oriented i* protocol model is presented, where are
represented the actors Student and Student Control Department. A fragment of the boundary of the
Student Control Department is presented. In this fragment are represented examples of internal
elements of type task together with an internal element relationship of type decomposition. Finally, is
presented a resource dependency between the actors.

Figure 7-8. Dependencies in iStarML of the i* strategic dependency model

7.3 Following the transformation process flow

111

Figure 7-9. Ielement and ielementLink in iStarML of the i* strategic rationale model

Figure 7-10. Dependencies in iStarML of the Tropos actor model

Chapter 7. Case study

112

Figure 7-11. Ielement and ielementLink in iStarML of the Tropos goal model

Figure 7-12. Service dependencies in iStarML of the S-O global model

7.3 Following the transformation process flow

113

Figure 7-13. Ielement and ielementLink in iStarML of the S-O process model

Figure 7-14. Dependencies, ielement and ielementLink in iStarML of the S-O protocol model

Chapter 7. Case study

114

7.3.3 Automatic transformation process using TAGOOn
The tool TAGOOn has been executed in order to carry out the automatic transformation process of
the models represented in the iStarML format of the case study.
In the following subsections is indicated the number of mapping rules applied during the
transformation process. In each subsection a table describes the applied mapping rules in the
corresponding model and the number of occurrences that each rule was applied.

7.3.3.1 i*– Strategic dependency model
Number of applied mapping rules: 10

Table 7-2. Mapping rules applied for the i* strategic dependency model

Mapping rule Occurrences Description
R. 1 1 1 Diagram
R. 1.3 1 1 diagram name
R. 2 14 14 actors
R. 2.1 14 14 actors id
R. 2.2 14 14 actor name
R. 2.3 14 14 diagram elements
R. 3 53 53 dependum and

53 diagram elements
R. 4.1 53 53 dependum id
R. 4.2 53 53 dependum name
R. 8 53 53 dependencies

As it is shown in Figure 7-1 the “Student” actor depends on the “Thesis advisor” actor to achieve the
softgoal of “Choose appropriated courses”. In Figure 7-8 the iStarML representation of the same
dependency is shown and in Figure 7-15 the representation of the dependency as instance of the
ontology “i*&Tropos&Service-orientedi*” is presented. This representation is obtained after applying
the mapping rules 2, 3 and 8.

Figure 7-15. Dependency (of the i* strategic dependency model) in the ontology

7.3 Following the transformation process flow

115

7.3.3.2 i* – Strategic rationale model
Number of applied mapping rules: 15

Table 7-3. Mapping rules applied for the i* strategic rationale model

Mapping rule Occurrences Description
R. 1 1 1 Diagram
R. 1.3 1 1 diagram name
R. 2 14 14 actors
R. 2.1 14 14 actors id
R. 2.2 14 14 actor name
R. 2.3 14 14 diagram elements
R. 3 43 43 dependum and

43 diagram elements
R. 4 117 117 internal elements
R. 4.1 43 43 dependum id
R. 4.2 43 43 dependum name
R. 6 14 14 boundaries
R. 7 44 44 internal elements relationships
R. 8 43 43 dependencies
R. 8.1 43 43 dependencies with internal elements of the depender
R. 8.2 43 43 dependencies with internal elements of the dependee

As it is shown in Figure 7-2 the “Student” actor has an internal task called “register”, and it is
decomposed in “Request authorization of department chair”, “Request courses to take”, “Exchange
bank receipt”, “Take position in queue”, “Receive bank receipt”, and “Pay grant in bank”. In Figure 7-8
the iStarML representation of the same task and its decomposition is shown and in Figure 7-16 a
fragment of the representation of the task and its decomposition as instance of the ontology
“i*&Tropos&Service-orientedi*” is presented. This representation is obtained after applying the
mapping rules 4, 6 y 7.

Figure 7-16. DecompositionLink (of the i* strategic rationale model) in the ontology

Chapter 7. Case study

116

7.3.3.3 Tropos – Actor model
Number of applied mapping rules: 10

Table 7-4. Mapping rules applied for the Tropos actor model

Mapping rule Occurrences Description
R. 1 1 1 Diagram
R. 1.3 1 1 diagram name
R. 2 14 14 actors
R. 2.1 14 14 actors id
R. 2.2 14 14 actor name
R. 2.3 14 14 diagram elements
R. 3 53 53 dependum and

53 diagram elements
R. 4.1 53 53 dependum id
R. 4.2 53 53 dependum name
R. 8 53 53 dependencies

As it is shown in Figure 7-3 the “Student” actor depends on the “Department chair” actor to achieve
the plan of “Request authorization”. In Figure 7-10 the iStarML representation of the same
dependency is shown and in Figure 7-17 the representation of the dependency as instance of the
ontology “i*&Tropos&Service-orientedi*” is presented. This representation is obtained after applying
the mapping rules 2, 3 and 8.

Figure 7-17. Dependency (of the Tropos actor model) in the ontology

7.3.3.4 Tropos – Goal model
Number of applied mapping rules: 15

Table 7-5. Mapping rules applied for the Tropos goal model

Mapping rule Occurrences Description
R. 1 1 1 Diagram
R. 1.3 1 1 diagram name
R. 2 14 14 actors
R. 2.1 14 14 actors id
R. 2.2 14 14 actor name
R. 2.3 14 14 diagram elements
R. 3 43 43 dependum and

7.3 Following the transformation process flow

117

43 diagram elements
R. 4 121 117 internal elements
R. 4.1 43 43 dependum id
R. 4.2 43 43 dependum name
R. 6 14 14 boundaries
R. 7 48 48 internal elements relationships
R. 8 43 43 dependencies
R. 8.1 43 43 dependencies with internal elements of the depender
R. 8.2 43 43 dependencies with internal elements of the dependee

As it is shown in Figure 7-4 the “Student” actor has an internal plan called “register”, and it is
decomposed in “Request authorization of department chair”, “Request courses to take”, “Exchange
bank receipt”, “Take position in queue”, “Receive bank receipt”, and “Pay grant in bank”. In Figure
7-11 the iStarML representation of the same plan and its decomposition is shown and in Figure 7-16 a
fragment of the representation of the task and its decomposition as instance of the ontology
“i*&Tropos&Service-orientedi*” is presented. This representation is obtained after applying the
mapping rules 4, 6 y 7.

Figure 7-18. DecompositionLink (of the Tropos goal model) in the ontology

7.3.3.5 Service-oriented i* – Global model
Number of applied mapping rules: 14

Table 7-6. Mapping rules applied for the S-O global model

Mapping rule Occurrences Description
R. 1 1 1 Diagram
R. 1.3 1 1 diagram name
R. 2 14 14 actors
R. 2.1 14 14 actors id
R. 2.2 14 14 actor name
R. 2.3 14 14 diagram elements
R. 3 20 20 dependum and

20 diagram elements
R. 4 17 17 internal elements
R. 4.1 20 20 dependum id
R. 4.2 20 20 dependum name
R. 6 12 12 boundaries

Chapter 7. Case study

118

R. 8 20 20 dependencies
R. 8.2 19 19 dependencies with internal elements of the dependee
R. 8.4 19 19 service dependencies

As it is shown in Figure 7-5 the “Student” actor depends on the “Thesis advisor” actor (who offers the
service of “Analyze courses”) to achieve the goal of “Choose courses”. In Figure 7-12 the iStarML
representation of the same service dependency is shown and in

Figure 7-19 the representation of the service dependency as instance of the ontology
“i*&Tropos&Service-orientedi*” is presented. This representation is obtained after applying the
mapping rules 2, 3 and 8.

Figure 7-19. Service dependency (of the S-O global model) in the ontology

7.3.3.6 Service-oriented i* – Process model
Number of applied mapping rules: 14

Table 7-7. Mapping rules applied for the S-O process model

Mapping rule Occurrences Description
R. 1 1 1 Diagram

7.3 Following the transformation process flow

119

R. 1.3 1 1 diagram name
R. 2 2 2 actors
R. 2.1 2 2 actors id
R. 2.2 2 2 actor name
R. 2.3 2 2 diagram elements
R. 4 26 26 internal elements
R. 4.1 26 26 internal element id
R. 4.2 26 26 internal element name
R. 6 1 1 boundary
R. 7 20 20 internal elements relationships
R. 8 1 1 dependency
R. 8.2 1 1 dependency with internal elements of the dependee
R. 8.4 1 1 service dependency

As it is shown in Figure 7-6 the “Student control department” actor has an internal process called
“Receive signed schedule”, which is linked with the goal “Authorize schedule”. In Figure 7-13 the
iStarML representation of the same process-goal relationship is shown and in Figure 7-20 the
representation of the process-goal relationship as instance of the ontology “i*&Tropos&Service-
orientedi*” is presented. This representation is obtained after applying the mapping rules 4, 6 y 7.

Figure 7-20. Process-goal relationship (of the S-O process model) in the ontology

7.3.3.7 Service-oriented i* – Protocol model
Number of applied mapping rules: 15

Table 7-8. Mapping rules applied for the S-O protocol model

Mapping rule Occurrences Description
R. 1 1 1 Diagram
R. 1.3 1 1 diagram name
R. 2 3 3 actors
R. 2.1 3 3 actors id
R. 2.2 3 3 actor name
R. 2.3 3 3 diagram elements
R. 3 5 5 dependum and

5 diagram elements
R. 4 14 14 internal elements

Chapter 7. Case study

120

R. 4.1 5 5 dependum id
R. 4.2 5 5 dependum name
R. 6 3 3 boundaries
R. 7 5 5 internal elements relationships
R. 8 5 5 dependencies
R. 8.1 5 5 dependencies with internal elements of the depender
R. 8.2 5 5 dependencies with internal elements of the dependee

As it is shown in Figure 7-7 the “Student” actor has an internal task called “Take position in queue”,
and it is decomposed in “Register entrance”, “Request turn”, “Deliver turn to student control
department”, and “Take position in queue”. In Figure 7-14 the iStarML representation of the same
task and its decomposition is shown and in

Figure 7-21 a fragment of the representation of the task and its decomposition as instance of the
ontology “i*&Tropos&Service-orientedi*” is presented. This representation is obtained after applying
the mapping rules 4, 6 y 7.

Figure 7-21. DecompositionLink (of the S-O protocol model) in the ontology

7.4 Summary
In order to validate the proposed methodology for integrating i* variants, and to demonstrate that it
is an effective way to propitiate the integration of the i* variants models, a first application of the
methodology has been carried out. In section 5.4 the application of the methodology, at the level of
metamodels (layer M2) according to MDE approach, to the variants: i*, Tropos and Service-oriented
i* is presented. The ontology called “i*&Tropos&Service-orientedi*” has been obtained after
following the methodology. In Chapter 6 the application of the methodology, at the level of models
(layer M1) according to MDE approach, to the variants: i*, Tropos and Service-oriented i* is
presented. It corresponds to the development of the tool support for the automatic transformation of

7.4 Summary

121

models represented with the variants: i*, Tropos and Service-oriented i* into instances of the
ontology “i*&Tropos&Service-orientedi*”.
In this chapter, the application of the proposed solution has been validated with a real case study
which models represents the processes of a postgraduate institution (www.cenidet.edu.mx) that
offers Master and PhD programs. The case study has been represented in models of the variants: i*,
Tropos and Service-oriented i*. 7 models have been presented: the strategic dependency and
strategic rationale models from i*, the actor and goal models from Tropos and the global, process and
protocol model from Service-oriented i*. Each model has been presented graphically. Fragments of
their representation in the iStarML format have been presented in order to illustrate the use of the
format. Each model has been automatically transformed into ontologies derived from the concepts of
the ontology “i*&Tropos&Service-orientedi*” by the execution of the tool TAGOOn. The lists of
applied mapping rules have been presented in order to demonstrate the proper transformation of
the tool.

 123

Chapter 8 Conclusions and future work

Conclusions and future work

8.1 Conclusions
This chapter presents the conclusions of this research work. First the achievement of the objectives is
discussed. Then, the contributions are emphasized, and finally, directions of future work are outlined.
The objectives of this research work have been presented in Chapter 1.
In this thesis, the following objective was proposed as the solution to the problem outlined:

To integrate i* variants through the use of an ontology and automatically obtain the i* variants
models represented in terms of the ontology propitiating their understanding regardless of the

variant with which they were generated.

For the accomplishment of the main objective four specific objectives were identified. The specific
objectives are listed below together with the description of the activities carried out for their
achievement:

1. The development of an ontology for representing the core concepts of the i* variants and
the relationships between those concepts.
For the achievement of this objective, the development of the ontology OntoiStar described
in Chapter 4 has been carried out. OntoiStar represents the core concepts of the i* variants
and the relationships between those concepts. First, a comparative analysis of two i*
metamodels that deal with the heterogeneity of i* variants was carried out. The i*
metamodels are the result of previous analysis of several i* variants, therefore they include
mainly the core concepts of the i* variants. The purpose of the comparative analysis was to
determine the concepts and relationships to include into the ontology OntoiStar. After
determining the elements to include into the ontology OntoiStar, OntoiStar was developed by
means of an MDE approach. A set of transformation rules were proposed to carry out the
transformation process from elements of the metamodel (represented in the Unified
Modeling Language) into elements of the OWL language. The transformation rules were
applied in order to obtain the ontology OntoiStar.

2. The development of an integration methodology for guiding the process of integrate into

an ontology the concepts and relationships of several i* variants.
For the achievement of this objective, the development of the ontology OntoiStar+ described
in Chapter 5 has been carried out. The ontology OntoiStar+ corresponds to an ontology with
i* variants integrated. First, a method for the generation of the specific ontology of an i*
variant was proposed. The method consist of a guidance to integrate into OntoiStar the
additional elements of a specific i* variant and it comprises a set of steps related with the
tasks of identify, categorize, transform and classify the additional constructs of an i* variant
into the ontology OntoiStar. The method can be implemented with any i* variant. And

Chapter 8. Conclusions and future work

124

second, an ontology merging process was proposed to merge two or more ontologies of
different i* variants. The result of the ontology merging process is the integrated ontology
OntoiStar+ which contains the elements of the merged i* variant ontologies. The ontology
merging process was automated and integrated to the tool presented in Chapter 6.

3. The application of the integration methodology to the variants: i*, Tropos and Service-
oriented i*.
For the achievement of this objective the integration methodology presented in Chapter 5
was implemented using the variants: i*, Tropos and Service-oriented i*. The resultant
ontology, which was called “i*&Tropos&Service-orientedi*” contains all the constructs of the
variants: i*, Tropos and Service-oriented i*. For obtaining “i*&Tropos&Service-orientedi*”,
first the method (presented in section 5.2) for generating the ontology for a specific i* variant
was applied three times in order to obtain the ontology of each i* variant. Then, the
automatic ontology merging process (presented in section 6.5.4) was executed two times:
first, the ontology of i* with the ontology of Tropos were merged. And second, the resultant
merged ontology of i* and Tropos was merged with the ontology of Service-oriented i*. The
final ontology is a merged ontology of i*, Tropos and Service-oriented i*.

4. The use of the ontology with i* variants integrated as the underlying baseline for the
automatic transformation of an i* based model into ontologies derived from the concepts
of the ontology with i* variants integrated. This, by implementing a tool to automate the
transformation process.
For the achievement of this objective the development the tool TAGOOn (Tool for the
Automatic Generation of Organizational Ontologies), described in Chapter 6, was carried out.
First, the representation of i* based models with the iStarML language was described in order
to establish the format for representing the i* based models in a computer language. The
iStarML language encompasses the i* core concepts and relationships, however, the language
was studied and analyzed in order to provide a way to represent the additional elements of
the variants: Tropos and Service-oriented i*. Then, it was set up that the input of the tool
must be a file with the i* based model represented in the iStarML format. TAGOOn was
developed in order to automate the transformation process from an i* based model into
instances of an ontology with i* variants integrated. A set of mapping rules was proposed for
supporting the transformation of the elements of the iStarML language into elements of
OntoiStar+, taking into account, those adaptations necessary for Tropos and Service-oriented
i* variants. The current version of TAGOOn supports the automatic transformation of models
represented with the variants: i*, Tropos and Service-oriented i*. However, the mapping rules
can be extended in order to expand the applicability of TAGOOn for the transformation of
models from additional i* variants. A case study presented in Chapter 7 was carried out in
order to demonstrate that the integration methodology presented in this thesis is an effective
way to propitiate the integration of the i* variants and the understanding of their models
regardless of the variant with which they were generated as it is the main objective of this
work.

The specific objectives were proposed with the purpose of achieving the main objective of this
research work. In this section, it has been described how each specific objective was reached.

 8.2 Related publications

125

Therefore, we conclude that the proposed solutions for each specific objective attain the
accomplishment of the main objective.

8.1.1 Summary of contributions
Several contributions have been implemented in this thesis:

 An ontology called OntoiStar which represents the core concepts of the i* variants and the
relationships between those concepts.

 A methodology for guidance the process of obtain the ontology of a specific i* variant.
 A merging process for obtaining an integrated ontology called OntoiStar+ with the elements

of two or more i* variants.
 The integrated ontology “i*&Tropos&Service-orientedi*” which contains the elements of the

variants: i*, Tropos and Service-oriented i*.
 The tool TAGOOn – (Tool for the Automatic Generation of Organizational Ontologies) for the

automatic transformation from an i* based model represented with the variants: i*, Tropos
and Service-oriented i* to an ontology derived from the concepts of the ontology
“i*&Tropos&Service-orientedi*”.

 The set of mapping rules which are the basis for expanding the applicability of TAGOOn in the
transformation of models from additional i* variants.

8.2 Related publications
Part of the contributions of this thesis is supported by a publication carried out throughout this
research work.
The contributions have been published in the fifth international i* workshop (iStar’11):

 Karen Najera, Anna Perini, Alicia Martinez, Hugo Estrada. “Supporting i* model integration
through an ontology-based approach”. In fifth international i* workshop (iStar’11), ser. LNCS,
2011, pp. 43–48. August, 2011.

 Karen Najera, Anna Perini, Alicia Martinez, Hugo Estrada. Generating Organizational
Ontologies through Visual Modeling. (To be published).

8.3 Future work
With the contributions and the methodology proposed in this thesis, our intention is to give a further
step in the process of achieve the interoperability of i* variants. This by providing a way to move i*
based models from one i* variant to other without loss of information or semantic.
The future work can be summarized as:

 Take into account the semantic of the i* variants during the creation of ontologies.
 Propose inference rules which comprise a redefinition of i* based models according to the

differences of the i* variants elements and semantic for avoiding the loss of information.
 Develop a tool for the automatic transformation process from ontologies to i* based models.

 127

Bibliography
[1] A. M. Rebollar, H. E. Esquivel, and L. G. Moreno, “Una guía rápida de la metodología Tropos,”
REVISTA GTI, vol. 7, no. 19, 2009. [Online]. Available: http://revistas.uis.edu.co/index.php/revistagti/-
article/view/162
[2] E. S.-K. Yu, “Modelling strategic relationships for process reengineering,” Ph.D. dissertation,
University of Toronto, Toronto, Ont., Canada, 1996.
[3] C. Cares, X. Franch, A. Perini, and A. Susi, “Towards interoperability of i* models using
iStarML,” Computer Standards & Interfaces, vol. 33, no. 1, pp. 69–79, 2011.
[4] P. Giorgini, J. Mylopoulos, A. Perini, and A. Susi, “The Tropos Methodology and Software
Development Environment,” in Social Modeling for Requirements Engineering. MIT Press, 2010, pp.
405–423.
[5] “The GRL website,” http://www.cs.toronto.edu/km/GRL/, last access: 25/05/2011.
[6] H. Estrada, “A service-oriented approach for the i* framework,” Ph.D. dissertation, Valencia
University of Technology, Valencia, Spain, 2008.
[7] C. P. Ayala, C. Cares, J. P. Carvallo, G. Grau, M. Haya, G. Salazar, X. Franch, E. Mayol, and
C. Quer, “A comparative analysis of i*-based agent-oriented modeling language,” in Proceedings of
17th International Conference on Software Engineering and Knowledge Engineering (SEKE’05. KSI
Press, 2005, pp. 43–50.
[8] C. Cares, X. Franch, E. Mayol, and C. Quer, “A Reference Model for i*,” in Social Modeling for
Requirements Engineering. MIT Press, 2010, pp. 573–606.
[9] M. Lucena, E. Santos, C. T. L. L. Silva, F. M. R. Alencar, M. J. Silva, and J. Castro, “Towards a
unified metamodel for i*,” in Research Challenges in Information Science, 2008, pp. 237–246.
[10] S. Staab, T. Walter, G. Gröner, and F. S. Parreiras, “Model Driven Engineering with Ontology
Technologies,” in Reasoning Web, 2010, pp. 62–98.
[11] B. Henderson-Sellers, “Bridging metamodels and ontologies in software engineering,” Journal
of Systems and Software, vol. 84, no. 2, pp. 301–313, 2011.
[12] J. A. Bubenko and M. Kirikova, “"Worlds" in Requirements Acquisition and Modelling,” in 4th
European - Japanese Seminar on Information Modelling and Knowledge Bases. IOS Press, 1994.
[13] P. Loucopoulos and E. Kavakli, “Enterprise modelling and the teleological approach to
requirements engineering.” Int. J. Cooperative Inf. Syst., vol. 4, no. 1, pp. 45–79, 1995.
[14] P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, and J. Mylopoulos, “Tropos: An agent-
oriented software development methodology,” Autonomous Agents and Multi-Agent Systems, vol. 8,
no. 3, pp. 203–236, 2004.
[15] “i* wiki,” http://istar.rwth-aachen.de/tiki-view_articles.php, last access: 05/08/2011.
[16] T. R. Gruber, “Toward principles for the design of ontologies used for knowledge sharing,” in
International Journal of Human-Computer Studies, vol. 43, 1993, pp. 907–928. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.89.5775
[17] W. N. Borst, Construction of Engineering Ontologies for Knowledge Sharing and Reuse.
Doctoral Thesis of the University of Tweenty: Enschede, The Netherlands, 1997.
[18] R. R. Studer, R. Benjamins, and D. Fensel, “Knowledge engineering: principles and methods,”
Data and knowledge engineering, vol. 25, pp. 161–197, 1998.

Bibliography

128

[19] M. Uschold and M. Grüninger, “Ontologies: principles, methods, and applications,”
Knowledge Engineering Review, vol. 11, no. 2, pp. 93–155, 1996. [Online]. Available: http://-
citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.48.5917
[20] N. Guarino, Formal Ontology in Information Systems: Proceedings of the 1st International
Conference June 6-8, 1998, Trento, Italy, 1st ed. Amsterdam, The Netherlands, The Netherlands: IOS
Press, 1998.
[21] Y. Lin, “Semantic annotation for process models: Facilitating process knowledge management
via semantic interoperability,” Ph.D. dissertation, Norwegian University of Science and Technology,
Trondheim, Norway, 2008.
[22] A. Prieto and A. Lozano-Tello, “Use of ontologies as representation support of workflows
oriented to administrative management,” Journal of Network and Systems Management, vol. 17,
no. 3, pp. 309–325, 2009.
[23] M. V, E. Bossche, P. Ross, I. Maclarty, B. V. Nuffelen, and N. Pelov, “Ontology driven software
engineering for real life applications,” 2007.
[24] I. Weber, J. Hoffmann, and J. Mendling, “Beyond soundness: on the verification of semantic
business process models,” Distributed and Parallel Databases, vol. 27, no. 3, pp. 271–343, 2010.
[25] M. Dimitrov, A. Simov, S. Stein, and M. Konsntinov, “A bpmo based semantic business process
modelling environment,” in Semantic Business Process and Product Lifecycle Management, ser. CEUR,
vol. 251, 2007.
[26] C. Ghidini, C. D. Francescomarino, M. Rospocher, P. Tonella, and L. Serafini, “Semantics based
aspect oriented management of exceptional flows in business processes,” IEEE Transactions on
Systems, Man, and Cybernetics, Part C: Applications and Reviews, On-line first 2011.
[27] G. Gröner and S. Staab, “Modeling and query patterns for process retrieval in owl.” in
International Semantic Web Conference, ser. Lecture Notes in Computer Science, A. Bernstein, D. R.
Karger, T. Heath, L. Feigenbaum, D. Maynard, E. Motta, and K. Thirunarayan, Eds., vol. 5823. Springer,
2009, pp. 243–259.
[28] D. Ameller, “Considering Non-Functional Requirements in Model-Driven Engineering,”
Master, Universitat Politècnica de Catalunya, 2009.
[29] A. G. Kleppe, J. Warmer, and W. Bast, MDA Explained: The Model Driven Architecture: Practice
and Promise. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2003.
[30] “Object Management Group. MDA Guide Version 1.0.1,” http://www.omg.org/cgi-bin/-
doc?omg/03-06-01, last access: 23/04/2011.
[31] C. Atkinson and T. Kuhne, “Model-driven development: a metamodeling foundation,” IEEE
Software, vol. 20, no. 5, pp. 36–41, Sep. 2003. [Online]. Available: http://dx.doi.org/10.1109/-
MS.2003.1231149
[32] G. Booch, A. W. Brown, S. Iyengar, J. Rumbaugh, and B. Selic, “An MDA Manifesto,” Business
Process Trends/MDA Journal, May 2004.
[33] “Object Management Group. Object Constraint Language (OCL) Specification, 2.0.” http://-
www.omg.org/spec/OCL/2.0/, last access: 25/05/2011.
[34] G. Kappel, E. Kapsammer, H. Kargl, G. Kramler, T. Reiter, W. Retschitzegger, W. Schwinger,
and M. Wimmer, “Lifting Metamodels to Ontologies: A Step to the Semantic Integration of Modeling
Languages,” Model Driven Engineering Languages and Systems, vol. 4199, pp. 528–542, 2006.
[Online]. Available: http://dx.doi.org/10.1007/11880240_37
[35] “Object Management Group. Ontology Definition Metamodel (ODM) Version 1.0,” http://-
www.omg.org/spec/ODM/1.0/PDF/, last access: 25/05/2011.

Bibliography

129

[36] D. Gasevic, D. Djuric, and V. Devedzic, “Bridging MDA and OWL Ontologies.” Journal of Web
Engineering, vol. 4, no. 2, pp. 118–143, 2005. [Online]. Available: http://fon.fon.bg.ac.yu/devedzic/-
JWE2005.pdf
[37] “Meta Object Facility (MOF) Specification Version 1.4. OMG Document formal/02-04-03,”
http://www.omg.org/spec/MOF/1.4/PDF/, last access: 23/08/2011.
[38] S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. L. McGuinness, P. F. Patel-Schneider,
and L. A. Stein, “OWL Web Ontology Language Reference,” W3C, http://www.w3.org/TR/owl-ref/,
Tech. Rep., February 2004.
[39] J. H. Gennari, M. A. Musen, R. W. Fergerson, W. E. Grosso, M. Crubézy, H. Eriksson, N. F. Noy,
and S. W. Tu, “The evolution of protégé: an environment for knowledge-based systems
development,” Int. J. Hum.-Comput. Stud., vol. 58, no. 1, pp. 89–123, 2003.
[40] D. Bertolini, A. Perini, A. Susi, and H. Mouratidis, “The Tropos visual modeling language. A
MOF 1.4 compliant metamodel,” in AOSE TFG meeting, collocated with the 2nd Agentlink III Technical
Forum (AL3-TF2, 2005.
[41] C. Cares, X. Franch, A. Perini, and A. Susi, “IStarML. The i* Mark-up Language: REFERENCE’S
GUIDE,” Tech. Rep., 2007.
[42] R. Sethi, Programming Languages: Concepts and Constructs, Second Edition. Addison Wesley,
1996. [Online]. Available: http://www.amazon.com/Programming-Languages-Concepts-Constructs-
Second/dp/0201590654
[43] “The iStarML website,” http://www.essi.upc.edu/~gessi/iStarML/, last access: 25/05/2011.
[44] “OME: Organization Modelling Environment tool website,” http://www.cs.toronto.edu/km/-
ome/, last access: 05/08/2011.
[45] “The jUCMNav website,” http://jucmnav.softwareengineering.ca/ucm/bin/view/ProjetSEG/,
last access: 25/05/2011.
[46] “The HiME website,” http://www.lsi.upc.edu/~llopez/hime/, last access: 25/05/2011.

